/* render.c Vulkan render manager Copyright (C) 2023 Bill Currie This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_MATH_H # include #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include "QF/cmem.h" #include "QF/hash.h" #include "QF/va.h" #include "QF/Vulkan/command.h" #include "QF/Vulkan/debug.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/pipeline.h" #include "QF/Vulkan/render.h" #include "QF/Vulkan/resource.h" #include "QF/Vulkan/swapchain.h" #include "vid_vulkan.h" #include "vkparse.h" VkCommandBuffer QFV_GetCmdBufffer (vulkan_ctx_t *ctx, bool secondary) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type rctx = ctx->render_context; __auto_type job = rctx->job; VkCommandBufferAllocateInfo cinfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = job->command_pool, .level = secondary ? VK_COMMAND_BUFFER_LEVEL_SECONDARY : VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; VkCommandBuffer cmd; dfunc->vkAllocateCommandBuffers (device->dev, &cinfo, &cmd); return cmd; } void QFV_AppendCmdBuffer (vulkan_ctx_t *ctx, VkCommandBuffer cmd) { __auto_type rctx = ctx->render_context; __auto_type job = rctx->job; DARRAY_APPEND (&job->commands, cmd); } static void run_tasks (uint32_t task_count, qfv_taskinfo_t *tasks, qfv_taskctx_t *ctx) { for (uint32_t i = 0; i < task_count; i++) { tasks[i].func->func (tasks[i].params, 0, (exprctx_t *) ctx); } } static void run_pipeline (qfv_pipeline_t *pipeline, VkCommandBuffer cmd, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; dfunc->vkCmdBindPipeline (cmd, pipeline->bindPoint, pipeline->pipeline); dfunc->vkCmdSetViewport (cmd, 0, 1, &pipeline->viewport); dfunc->vkCmdSetScissor (cmd, 0, 1, &pipeline->scissor); qfv_taskctx_t taskctx = { .ctx = ctx, .pipeline = pipeline, .cmd = cmd, }; run_tasks (pipeline->task_count, pipeline->tasks, &taskctx); if (pipeline->num_descriptorsets) { dfunc->vkCmdBindDescriptorSets (cmd, pipeline->bindPoint, pipeline->layout, pipeline->first_descriptorset, pipeline->num_descriptorsets, pipeline->descriptorsets, 0, 0); } } // https://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/ static void run_subpass (qfv_subpass_t *sp, VkCommandBuffer cmd, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; dfunc->vkBeginCommandBuffer (cmd, &sp->beginInfo); QFV_duCmdBeginLabel (device, cmd, sp->label.name, {VEC4_EXP (sp->label.color)}); for (uint32_t i = 0; i < sp->pipeline_count; i++) { __auto_type pipeline = &sp->pipelines[i]; run_pipeline (pipeline, cmd, ctx); } QFV_duCmdEndLabel (device, cmd); dfunc->vkEndCommandBuffer (cmd); } static void run_renderpass (qfv_renderpass_t *rp, vulkan_ctx_t *ctx) { printf ("%10.2f run_renderpass: %s\n", Sys_DoubleTime (), rp->label.name); qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type rctx = ctx->render_context; __auto_type job = rctx->job; VkCommandBuffer cmd = QFV_GetCmdBufffer (ctx, false); VkCommandBufferBeginInfo beginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; dfunc->vkBeginCommandBuffer (cmd, &beginInfo); QFV_duCmdBeginLabel (device, cmd, rp->label.name, {VEC4_EXP (rp->label.color)}); dfunc->vkCmdBeginRenderPass (cmd, &rp->beginInfo, rp->subpassContents); for (uint32_t i = 0; i < rp->subpass_count; i++) { __auto_type sp = &rp->subpasses[i]; VkCommandBuffer subcmd = QFV_GetCmdBufffer (ctx, true); run_subpass (sp, subcmd, ctx); dfunc->vkCmdExecuteCommands (cmd, 1, &subcmd); //FIXME comment is a bit off as exactly one buffer is always submitted // //Regardless of whether any commands were submitted for this //subpass, must step through each and every subpass, otherwise //the attachments won't be transitioned correctly. //However, only if not the last (or only) subpass. if (i < rp->subpass_count - 1) { dfunc->vkCmdNextSubpass (cmd, rp->subpassContents); } } dfunc->vkCmdEndRenderPass (cmd); QFV_CmdEndLabel (device, cmd); dfunc->vkEndCommandBuffer (cmd); DARRAY_APPEND (&job->commands, cmd); } static void run_compute_pipeline (qfv_pipeline_t *pipeline, VkCommandBuffer cmd, vulkan_ctx_t *ctx) { printf ("run_compute_pipeline: %s\n", pipeline->label.name); qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; dfunc->vkCmdBindPipeline (cmd, pipeline->bindPoint, pipeline->pipeline); qfv_taskctx_t taskctx = { .ctx = ctx, .pipeline = pipeline, .cmd = cmd, }; run_tasks (pipeline->task_count, pipeline->tasks, &taskctx); if (pipeline->num_descriptorsets) { dfunc->vkCmdBindDescriptorSets (cmd, pipeline->bindPoint, pipeline->layout, pipeline->first_descriptorset, pipeline->num_descriptorsets, pipeline->descriptorsets, 0, 0); } vec4u_t d = pipeline->dispatch; dfunc->vkCmdDispatch (cmd, d[0], d[1], d[2]); } static void run_compute (qfv_compute_t *comp, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type rctx = ctx->render_context; __auto_type job = rctx->job; VkCommandBuffer cmd = QFV_GetCmdBufffer (ctx, false); VkCommandBufferBeginInfo beginInfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; dfunc->vkBeginCommandBuffer (cmd, &beginInfo); for (uint32_t i = 0; i < comp->pipeline_count; i++) { __auto_type pipeline = &comp->pipelines[i]; run_compute_pipeline (pipeline, cmd, ctx); } dfunc->vkEndCommandBuffer (cmd); DARRAY_APPEND (&job->commands, cmd); } static void run_process (qfv_process_t *proc, vulkan_ctx_t *ctx) { qfv_taskctx_t taskctx = { .ctx = ctx, }; run_tasks (proc->task_count, proc->tasks, &taskctx); } void QFV_RunRenderJob (vulkan_ctx_t *ctx) { auto rctx = ctx->render_context; auto job = rctx->job; for (uint32_t i = 0; i < job->num_steps; i++) { __auto_type step = &job->steps[i]; printf ("%10.2f run_step: %s\n", Sys_DoubleTime (), step->label.name); if (step->render) { run_renderpass (step->render->active, ctx); } if (step->compute) { run_compute (step->compute, ctx); } if (step->process) { run_process (step->process, ctx); } } auto device = ctx->device; auto dfunc = device->funcs; auto queue = &device->queue; auto frame = &ctx->frames.a[ctx->curFrame]; VkPipelineStageFlags waitStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO, 0, 1, &frame->imageAvailableSemaphore, &waitStage, job->commands.size, job->commands.a, 1, &frame->renderDoneSemaphore, }; printf ("%10.2f submit for frame %d: %zd %p\n", Sys_DoubleTime (), ctx->curFrame, job->commands.size, frame->imageAvailableSemaphore); dfunc->vkResetFences (device->dev, 1, &frame->fence); dfunc->vkQueueSubmit (queue->queue, 1, &submitInfo, frame->fence); VkPresentInfoKHR presentInfo = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, 0, 1, &frame->renderDoneSemaphore, 1, &ctx->swapchain->swapchain, &ctx->swapImageIndex, 0 }; dfunc->vkQueuePresentKHR (queue->queue, &presentInfo); } #if 0 void QFV_DestroyFramebuffer (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type rctx = ctx->render_context; __auto_type job = rctx->job; __auto_type rp = &job->renderpasses[0]; if (rp->beginInfo.framebuffer) { VkFramebuffer framebuffer = rp->beginInfo.framebuffer; rp->beginInfo.framebuffer = 0; dfunc->vkDestroyFramebuffer (device->dev, framebuffer, 0); } } #endif static VkImageView __attribute__((pure)) find_imageview (qfv_reference_t *ref, qfv_renderctx_t *rctx) { __auto_type jinfo = rctx->jobinfo; __auto_type job = rctx->job; const char *name = ref->name; if (strncmp (name, "$imageviews.", 7) == 0) { name += 7; } for (uint32_t i = 0; i < jinfo->num_imageviews; i++) { __auto_type vi = &jinfo->imageviews[i]; __auto_type vo = &job->image_views[i]; if (strcmp (name, vi->name) == 0) { return vo->image_view.view; } } Sys_Error ("%d:invalid imageview: %s", ref->line, ref->name); } void QFV_CreateFramebuffer (vulkan_ctx_t *ctx, qfv_renderpass_t *rp) { __auto_type rctx = ctx->render_context; auto fb = rp->framebufferinfo; VkImageView attachments[fb->num_attachments]; VkFramebufferCreateInfo cInfo = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = fb->num_attachments, .pAttachments = attachments, .renderPass = rp->beginInfo.renderPass, .width = fb->width, .height = fb->height, .layers = fb->layers, }; for (uint32_t i = 0; i < fb->num_attachments; i++) { if (fb->attachments[i].external) { attachments[i] = 0; if (!strcmp (fb->attachments[i].external, "$swapchain")) { auto sc = ctx->swapchain; attachments[i] = sc->imageViews->a[ctx->swapImageIndex]; cInfo.width = sc->extent.width; cInfo.height = sc->extent.height; } } else { attachments[i] = find_imageview (&fb->attachments[i].view, rctx); } } qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; VkFramebuffer framebuffer; dfunc->vkCreateFramebuffer (device->dev, &cInfo, 0, &framebuffer); QFV_duSetObjectName (device, VK_OBJECT_TYPE_FRAMEBUFFER, framebuffer, va (ctx->va_ctx, "framebuffer:%s", rp->label.name)); rp->beginInfo.framebuffer = framebuffer; for (uint32_t i = 0; i < rp->subpass_count; i++) { __auto_type sp = &rp->subpasses[i]; sp->inherit.framebuffer = framebuffer; } } static void wait_on_fence (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto dev = device->dev; __auto_type frame = &ctx->frames.a[ctx->curFrame]; dfunc->vkWaitForFences (dev, 1, &frame->fence, VK_TRUE, 2000000000); auto job = ctx->render_context->job; job->command_pool = frame->command_pool; dfunc->vkResetCommandPool (device->dev, job->command_pool, 0); DARRAY_CLEAR (&job->commands); } static void renderpass_update_viewper_sissor (qfv_renderpass_t *rp, const qfv_output_t *output) { rp->beginInfo.renderArea.extent = output->extent; for (uint32_t i = 0; i < rp->subpass_count; i++) { auto sp = &rp->subpasses[i]; for (uint32_t j = 0; j < sp->pipeline_count; j++) { auto pl = &sp->pipelines[j]; pl->viewport.width = output->extent.width; pl->viewport.height = output->extent.height; pl->scissor.extent = output->extent; } } } static void update_viewport_scissor (qfv_render_t *render, const qfv_output_t *output) { for (uint32_t i = 0; i < render->num_renderpasses; i++) { renderpass_update_viewper_sissor (&render->renderpasses[i], output); } } static void update_framebuffer (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto job = ctx->render_context->job; auto step = QFV_GetStep (params[0], job); auto render = step->render; auto rp = render->active; qfv_output_t output = {}; Vulkan_ConfigOutput (ctx, &output); if (output.extent.width != render->output.extent.width || output.extent.height != render->output.extent.height) { //FIXME framebuffer image creation here update_viewport_scissor (render, &output); } if (!rp->beginInfo.framebuffer) { QFV_CreateFramebuffer (ctx, rp); } } static exprfunc_t wait_on_fence_func[] = { { .func = wait_on_fence }, {} }; static exprtype_t *update_framebuffer_params[] = { &cexpr_string, }; static exprfunc_t update_framebuffer_func[] = { { .func = update_framebuffer, .num_params = 1, update_framebuffer_params }, {} }; static exprsym_t render_task_syms[] = { { "wait_on_fence", &cexpr_function, wait_on_fence_func }, { "update_framebuffer", &cexpr_function, update_framebuffer_func }, {} }; void QFV_Render_Init (vulkan_ctx_t *ctx) { qfv_renderctx_t *rctx = calloc (1, sizeof (*rctx)); ctx->render_context = rctx; exprctx_t ectx = { .hashctx = &rctx->hashctx }; exprsym_t syms[] = { {} }; rctx->task_functions.symbols = syms; cexpr_init_symtab (&rctx->task_functions, &ectx); rctx->task_functions.symbols = 0; QFV_Render_AddTasks (ctx, render_task_syms); } void QFV_Render_Shutdown (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type rctx = ctx->render_context; if (rctx->job) { __auto_type job = rctx->job; //QFV_DestroyFramebuffer (ctx); //FIXME do properly for (uint32_t i = 0; i < job->num_renderpasses; i++) { dfunc->vkDestroyRenderPass (device->dev, job->renderpasses[i], 0); } for (uint32_t i = 0; i < job->num_pipelines; i++) { dfunc->vkDestroyPipeline (device->dev, job->pipelines[i], 0); } for (uint32_t i = 0; i < job->num_layouts; i++) { dfunc->vkDestroyPipelineLayout (device->dev, job->layouts[i], 0); } if (job->resources) { QFV_DestroyResource (ctx->device, job->resources); free (job->resources); } job->command_pool = 0; DARRAY_CLEAR (&job->commands); free (rctx->job); } for (uint32_t i = 0; i < ctx->frames.size; i++) { auto frame = &ctx->frames.a[i]; dfunc->vkDestroyCommandPool (device->dev, frame->command_pool, 0); } if (rctx->jobinfo) { __auto_type jinfo = rctx->jobinfo; for (uint32_t i = 0; i < jinfo->num_descriptorsetlayouts; i++) { __auto_type setLayout = jinfo->descriptorsetlayouts[i].setLayout; dfunc->vkDestroyDescriptorSetLayout (device->dev, setLayout, 0); } delete_memsuper (jinfo->memsuper); } if (rctx->task_functions.tab) { Hash_DelTable (rctx->task_functions.tab); } Hash_DelContext (rctx->hashctx); } void QFV_Render_AddTasks (vulkan_ctx_t *ctx, exprsym_t *task_syms) { __auto_type rctx = ctx->render_context; exprctx_t ectx = { .hashctx = &rctx->hashctx }; for (exprsym_t *sym = task_syms; sym->name; sym++) { Hash_Add (rctx->task_functions.tab, sym); for (exprfunc_t *f = sym->value; f->func; f++) { for (int i = 0; i < f->num_params; i++) { exprenum_t *e = f->param_types[i]->data; if (e && !e->symtab->tab) { cexpr_init_symtab (e->symtab, &ectx); } } } } } qfv_step_t * QFV_GetStep (const exprval_t *param, qfv_job_t *job) { // this is a little evil, but need to update the type after resolving // the step name auto stepref = (exprval_t *) param; // cache the render step referenced, using the parameter type as a flag // for whether the caching has been performed. if (stepref->type == &cexpr_string) { if (cexpr_string.size != cexpr_voidptr.size) { Sys_Error ("string and voidptr incompatible sizes"); } auto name = *(const char **)stepref->value; stepref->type = &cexpr_voidptr; *(void **)stepref->value = 0; for (uint32_t i = 0; i < job->num_steps; i++) { auto step = &job->steps[i]; if (!strcmp (step->label.name, name)) { *(void **)stepref->value = step; break; } } } return *(qfv_step_t **)stepref->value; }