/* mathlib.h Vector math library Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifndef __mathlib_h #define __mathlib_h /** \defgroup mathlib Vector and matrix functions \ingroup utils */ //@{ #include #include "QF/qtypes.h" #ifndef max # define max(a,b) ((a) > (b) ? (a) : (b)) #endif #ifndef min # define min(a,b) ((a) < (b) ? (a) : (b)) #endif #ifndef bound # define bound(a,b,c) (max(a, min(b, c))) #endif #ifndef M_PI # define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif extern int nanmask; extern const vec_t *const vec3_origin; extern const vec_t *const quat_origin; #define EQUAL_EPSILON 0.001 #define RINT(x) (floor ((x) + 0.5)) #define IS_NAN(x) (((*(int *) (char *) &x) & nanmask) == nanmask) #define DotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2]) #define VectorSubtract(a,b,c) \ do { \ (c)[0] = (a)[0] - (b)[0]; \ (c)[1] = (a)[1] - (b)[1]; \ (c)[2] = (a)[2] - (b)[2]; \ } while (0) #define VectorNegate(a,b) \ do { \ (b)[0] = -(a)[0]; \ (b)[1] = -(a)[1]; \ (b)[2] = -(a)[2]; \ } while (0) #define VectorAdd(a,b,c) \ do { \ (c)[0] = (a)[0] + (b)[0]; \ (c)[1] = (a)[1] + (b)[1]; \ (c)[2] = (a)[2] + (b)[2]; \ } while (0) #define VectorCopy(a,b) \ do { \ (b)[0] = (a)[0]; \ (b)[1] = (a)[1]; \ (b)[2] = (a)[2]; \ } while (0) #define VectorMultAdd(a,s,b,c) \ do { \ (c)[0] = (a)[0] + (s) * (b)[0]; \ (c)[1] = (a)[1] + (s) * (b)[1]; \ (c)[2] = (a)[2] + (s) * (b)[2]; \ } while (0) #define VectorMultSub(a,s,b,c) \ do { \ (c)[0] = (a)[0] - (s) * (b)[0]; \ (c)[1] = (a)[1] - (s) * (b)[1]; \ (c)[2] = (a)[2] - (s) * (b)[2]; \ } while (0) #define VectorLength(a) sqrt(DotProduct(a, a)) #define VectorScale(a,b,c) \ do { \ (c)[0] = (a)[0] * (b); \ (c)[1] = (a)[1] * (b); \ (c)[2] = (a)[2] * (b); \ } while (0) /** Shear vector \a b by vector \a a. Vector a represents the shear factors XY, XZ, YZ, ie in matrix form: [ 1 0 0 ] [ b0 ] [ a0 1 0 ] [ b1 ] [ a1 a2 1 ] [ b2 ] The reason for this particular scheme is that is how Mat4Decompose calculates the shear from a matrix. \note The order of calculations is important for when b and c refer to the same vector. */ #define VectorShear(a,b,c) \ do { \ (c)[2] = (b)[0] * (a)[1] + (b)[1] * (a)[2] + (b)[2]; \ (c)[1] = (b)[0] * (a)[0] + (b)[1]; \ (c)[0] = (b)[0]; \ } while (0) #define VectorUnshear(a,b,c) \ do { \ (c)[2] = (b)[2] - (b)[1] * (a)[2] - (b)[0] * ((a)[1]-(a)[0]*(a)[2]); \ (c)[1] = (b)[1] - (b)[0] * (a)[0]; \ (c)[0] = (b)[0]; \ } while (0) #define VectorCompMult(a,b,c) \ do { \ (c)[0] = (a)[0] * (b)[0]; \ (c)[1] = (a)[1] * (b)[1]; \ (c)[2] = (a)[2] * (b)[2]; \ } while (0) #define VectorCompDiv(a,b,c) \ do { \ (c)[0] = (a)[0] / (b)[0]; \ (c)[1] = (a)[1] / (b)[1]; \ (c)[2] = (a)[2] / (b)[2]; \ } while (0) #define VectorCompCompare(x, op, y) \ (((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) && ((x)[2] op (y)[2])) #define VectorCompare(x, y) VectorCompCompare (x, ==, y) #define VectorCompMin(a, b, c) \ do { \ (c)[0] = min ((a)[0], (b)[0]); \ (c)[1] = min ((a)[1], (b)[1]); \ (c)[2] = min ((a)[2], (b)[2]); \ } while (0) #define VectorCompMax(a, b, c) \ do { \ (c)[0] = max ((a)[0], (b)[0]); \ (c)[1] = max ((a)[1], (b)[1]); \ (c)[2] = max ((a)[2], (b)[2]); \ } while (0) #define VectorCompBound(a, b, c, d) \ do { \ (d)[0] = bound ((a)[0], (b)[0], (c)[0]); \ (d)[1] = bound ((a)[1], (b)[1], (c)[1]); \ (d)[2] = bound ((a)[2], (b)[2], (c)[2]); \ } while (0) #define VectorIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2]) #define VectorZero(a) ((a)[2] = (a)[1] = (a)[0] = 0); #define VectorSet(a,b,c,d) \ do { \ (d)[0] = a; \ (d)[1] = b; \ (d)[2] = c; \ } while (0) #define VectorBlend(v1,v2,b,v) \ do { \ (v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \ (v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \ (v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \ } while (0) //For printf etc #define VectorExpand(v) (v)[0], (v)[1], (v)[2] /* * VectorDistance, the distance between two points. * Yes, this is the same as sqrt(VectorSubtract then DotProduct), * however that way would involve more vars, this is cheaper. */ #define VectorDistance_fast(a, b) \ ((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \ (((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \ (((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))) #define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b)) #define QDotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] \ + (a)[2] * (b)[2] + (a)[3] * (b)[3]) #define QuatSubtract(a,b,c) \ do { \ (c)[0] = (a)[0] - (b)[0]; \ (c)[1] = (a)[1] - (b)[1]; \ (c)[2] = (a)[2] - (b)[2]; \ (c)[3] = (a)[3] - (b)[3]; \ } while (0) #define QuatNegate(a,b) \ do { \ (b)[0] = -(a)[0]; \ (b)[1] = -(a)[1]; \ (b)[2] = -(a)[2]; \ (b)[3] = -(a)[3]; \ } while (0) #define QuatConj(a,b) \ do { \ (b)[0] = (a)[0]; \ (b)[1] = -(a)[1]; \ (b)[2] = -(a)[2]; \ (b)[3] = -(a)[3]; \ } while (0) #define QuatAdd(a,b,c) \ do { \ (c)[0] = (a)[0] + (b)[0]; \ (c)[1] = (a)[1] + (b)[1]; \ (c)[2] = (a)[2] + (b)[2]; \ (c)[3] = (a)[3] + (b)[3]; \ } while (0) #define QuatCopy(a,b) \ do { \ (b)[0] = (a)[0]; \ (b)[1] = (a)[1]; \ (b)[2] = (a)[2]; \ (b)[3] = (a)[3]; \ } while (0) #define QuatMultAdd(a,s,b,c) \ do { \ (c)[0] = (a)[0] + (s) * (b)[0]; \ (c)[1] = (a)[1] + (s) * (b)[1]; \ (c)[2] = (a)[2] + (s) * (b)[2]; \ (c)[3] = (a)[3] + (s) * (b)[3]; \ } while (0) #define QuatMultSub(a,s,b,c) \ do { \ (c)[0] = (a)[0] - (s) * (b)[0]; \ (c)[1] = (a)[1] - (s) * (b)[1]; \ (c)[2] = (a)[2] - (s) * (b)[2]; \ (c)[3] = (a)[3] - (s) * (b)[3]; \ } while (0) #define QuatLength(a) sqrt(QDotProduct(a, a)) #define QuatScale(a,b,c) \ do { \ (c)[0] = (a)[0] * (b); \ (c)[1] = (a)[1] * (b); \ (c)[2] = (a)[2] * (b); \ (c)[3] = (a)[3] * (b); \ } while (0) #define QuatCompMult(a,b,c) \ do { \ (c)[0] = (a)[0] * (b)[0]; \ (c)[1] = (a)[1] * (b)[1]; \ (c)[2] = (a)[2] * (b)[2]; \ (c)[3] = (a)[3] * (b)[3]; \ } while (0) #define QuatCompDiv(a,b,c) \ do { \ (c)[0] = (a)[0] / (b)[0]; \ (c)[1] = (a)[1] / (b)[1]; \ (c)[2] = (a)[2] / (b)[2]; \ (c)[3] = (a)[3] / (b)[3]; \ } while (0) #define QuatCompCompare(x, op, y) \ (((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) \ && ((x)[2] op (y)[2]) && ((x)[3] op (y)[3])) #define QuatCompare(x, y) QuatCompCompare (x, ==, y) #define QuatCompMin(a, b, c) \ do { \ (c)[0] = min ((a)[0], (b)[0]); \ (c)[1] = min ((a)[1], (b)[1]); \ (c)[2] = min ((a)[2], (b)[2]); \ (c)[3] = min ((a)[3], (b)[3]); \ } while (0) #define QuatCompMax(a, b, c) \ do { \ (c)[0] = max ((a)[0], (b)[0]); \ (c)[1] = max ((a)[1], (b)[1]); \ (c)[2] = max ((a)[2], (b)[2]); \ (c)[3] = max ((a)[3], (b)[3]); \ } while (0) #define QuatCompBound(a, b, c, d) \ do { \ (d)[0] = bound ((a)[0], (b)[0], (c)[0]); \ (d)[1] = bound ((a)[1], (b)[1], (c)[1]); \ (d)[2] = bound ((a)[2], (b)[2], (c)[2]); \ (d)[3] = bound ((a)[3], (b)[3], (c)[3]); \ } while (0) #define QuatIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2] && !(a)[3]) #define QuatZero(a) ((a)[3] = (a)[2] = (a)[1] = (a)[0] = 0); #define QuatSet(a,b,c,d,e) \ do { \ (e)[0] = a; \ (e)[1] = b; \ (e)[2] = c; \ (e)[3] = d; \ } while (0) #define QuatBlend(q1,q2,b,q) \ do { \ (q)[0] = (q1)[0] * (1 - (b)) + (q2)[0] * (b); \ (q)[1] = (q1)[1] * (1 - (b)) + (q2)[1] * (b); \ (q)[2] = (q1)[2] * (1 - (b)) + (q2)[2] * (b); \ (q)[3] = (q1)[3] * (1 - (b)) + (q2)[3] * (b); \ } while (0) //For printf etc #define QuatExpand(q) (q)[0], (q)[1], (q)[2], (q)[3] #define DualAdd(a,b,c) \ do { \ (c).r = (a).r + (b).r; \ (c).e = (a).e + (b).e; \ } while (0) #define DualSubtract(a,b,c) \ do { \ (c).r = (a).r - (b).r; \ (c).e = (a).e - (b).e; \ } while (0) #define DualNegate(a,b) \ do { \ (b).r = -(a).r; \ (b).e = -(a).e; \ } while (0) #define DualConj(a,b) \ do { \ (b).r = (a).r; \ (b).e = -(a).e; \ } while (0) #define DualMult(a,b,c) \ do { \ (c).e = (a).r * (b).e + (a).e * (b).r; \ (c).r = (a).r * (b).r; \ } while (0) #define DualMultAdd(a,s,b,c) \ do { \ (c).r = (a).r + (s) * (b).r; \ (c).e = (a).e + (s) * (b).e; \ } while (0) #define DualMultSub(a,s,b,c) \ do { \ (c).r = (a).r - (s) * (b).r; \ (c).e = (a).e - (s) * (b).e; \ } while (0) #define DualNorm(a) ((a).r) #define DualScale(a,b,c) \ do { \ (c).r = (a).r * (b); \ (c).e = (a).e * (b); \ } while (0) #define DualCompCompare(x, op, y) ((x).r op (y).r) && ((x).e op (y).e) #define DualCompare(x, y) DualCompCompare (x, ==, y) #define DualIsZero(a) ((a).r == 0 && (a).e == 0) #define DualIsUnit(a) (((a).r - 1) * ((a).r - 1) < 1e-6 && (a).e * (a).e < 1e-6) #define DualSet(ar,ae,a) \ do { \ (a).ar = r; \ (a).er = r; \ } while (0) #define DualZero(a) \ do { \ (a).e = (a).r = 0; \ } while (0) #define DualBlend(d1,d2,b,d) \ do { \ (d).r = (d1).r * (1 - (b)) + (d2).r * (b); \ (d).e = (d1).e * (1 - (b)) + (d2).e * (b); \ } while (0) #define DualExpand(d) (d).r, (d).e #define DualQuatAdd(a,b,c) \ do { \ QuatAdd ((a).q0.q, (b).q0.q, (c).q0.q); \ QuatAdd ((a).qe.q, (b).qe.q, (c).qe.q); \ } while (0) #define DualQuatSubtract(a,b,c) \ do { \ QuatSub ((a).q0.q, (b).q0.q, (c).q0.q); \ QuatSub ((a).qe.q, (b).qe.q, (c).qe.q); \ } while (0) #define DualQuatNegate(a,b) \ do { \ QuatNegate ((a).q0.q, (b).q0.q); \ QuatNegate ((a).qe.q, (b).qe.q); \ } while (0) #define DualQuatConjQ(a,b) \ do { \ QuatConj ((a).q0.q, (b).q0.q); \ QuatConj ((a).qe.q, (b).qe.q); \ } while (0) #define DualQuatConjE(a,b) \ do { \ (b).q0 = (a).q0; \ QuatNegate ((a).qe.q, (b).qe.q); \ } while (0) #define DualQuatConjQE(a,b) \ do { \ QuatConj ((a).q0.q, (b).q0.q); \ (b).qe.sv.s = -(a).qe.sv.s; \ VectorCopy ((a).qe.sv.v, (b).qe.sv.v); \ } while (0) #define DualQuatMult(a,b,c) \ do { \ Quat_t t; \ QuatMult ((a).q0.q, (b).qe.q, t.q); \ QuatMult ((a).qe.q, (b).q0.q, (c).qe.q); \ QuatAdd (t.q, (c).qe.q, (c).qe.q); \ QuatMult ((a).q0.q, (b).q0.q, (c).q0.q); \ } while (0); #define DualQuatMultAdd(a,s,b,c) \ do { \ QuatMultAdd ((a).q0.q, s, (b).q0.q, (c).q0.q); \ QuatMultAdd ((a).qe.q, s, (b).qe.q, (c).qe.q); \ } while (0) #define DualQuatMultSub(a,s,b,c) \ do { \ QuatMultSub ((a).q0.q, s, (b).q0.q, (c).q0.q); \ QuatMultSub ((a).qe.q, s, (b).qe.q, (c).qe.q); \ } while (0) #define DualQuatNorm(a,b) \ do { \ (b).r = QuatLength ((a).q0.q); \ (b).e = 2 * QDotProduct ((a).q0.q, (a).qe.q); \ } while (0) #define DualQuatScale(a,b,c) \ do { \ QuatSub ((a).q0.q, (b), (c).q0.q); \ QuatSub ((a).qe.q, (b), (c).qe.q); \ } while (0) #define DualQuatCompCompare(x, op, y) \ (QuatCompCompare ((x).q0.q, op, (y).q0.q) \ &&QuatCompCompare ((x).qe.q, op, (y).qe.q)) #define DualQuatCompare(x, y) DualQuatCompCompare (x, ==, y) #define DualQuatIsZero(a) (QuatIsZero ((a).q0.q) && QuatIsZero ((a).qe.q)) #define DualQuatSetVect(vec, a) \ do { \ (a).q0.sv.s = 1; \ VectorZero ((a).q0.sv.v); \ (a).qe.sv.s = 0; \ VectorCopy (vec, (a).qe.sv.v); \ } while (0) #define DualQuatRotTrans(rot, trans, dq) \ do { \ QuatCopy (rot, (dq).q0.q); \ (dq).qe.sv.s = 0; \ VectorScale (trans, 0.5, (dq).qe.sv.v); \ QuatMult ((dq).qe.q, (dq).q0.q, (dq).qe.q); \ } while (0) #define DualQuatZero(a) \ do { \ QuatZero ((a).q0.q); \ QuatZero ((a).qe.q); \ } while (0) #define DualQuatBlend(dq1,dq2,b,dq) \ do { \ QuatBlend ((dq1).q0.q, (dq2).q0.q, (b), (dq).q0.q); \ QuatBlend ((dq1).qe.q, (dq2).qe.q, (b), (dq).qe.q); \ } while (0) #define DualQuatExpand(dq) QuatExpand ((dq).q0.q), QuatExpand ((dq).qe.q) #define Mat4Copy(a, b) \ do { \ QuatCopy ((a) + 0, (b) + 0); \ QuatCopy ((a) + 4, (b) + 4); \ QuatCopy ((a) + 8, (b) + 8); \ QuatCopy ((a) + 12, (b) + 12); \ } while (0) #define Mat4Add(a, b, c) \ do { \ QuatAdd ((a) + 0, (b) + 0, (c) + 0); \ QuatAdd ((a) + 4, (b) + 4, (c) + 4); \ QuatAdd ((a) + 8, (b) + 8, (c) + 8); \ QuatAdd ((a) + 12, (b) + 12, (c) + 12); \ } while (0) #define Mat4Subtract(a, b, c) \ do { \ QuatSubtract ((a) + 0, (b) + 0, (c) + 0); \ QuatSubtract ((a) + 4, (b) + 4, (c) + 4); \ QuatSubtract ((a) + 8, (b) + 8, (c) + 8); \ QuatSubtract ((a) + 12, (b) + 12, (c) + 12); \ } while (0) #define Mat4Scale(a, b, c) \ do { \ QuatScale ((a) + 0, (b), (c) + 0); \ QuatScale ((a) + 4, (b), (c) + 4); \ QuatScale ((a) + 8, (b), (c) + 8); \ QuatScale ((a) + 12, (b), (c) + 12); \ } while (0) #define Mat4CompMult(a, b, c) \ do { \ QuatCompMult ((a) + 0, (b) + 0, (c) + 0); \ QuatCompMult ((a) + 4, (b) + 4, (c) + 4); \ QuatCompMult ((a) + 8, (b) + 8, (c) + 8); \ QuatCompMult ((a) + 12, (b) + 12, (c) + 12); \ } while (0) #define Mat4Zero(a) \ memset (a, 0, 16 * sizeof a[0]) #define Mat4Identity(a) \ do { \ Mat4Zero (a); \ a[15] = a[10] = a[5] = a[0] = 1; \ } while (0) #define Mat4Expand(a) \ QuatExpand (a + 0), \ QuatExpand (a + 4), \ QuatExpand (a + 8), \ QuatExpand (a + 12) #define qfrandom(MAX) ((float) MAX * (rand() * (1.0 / (RAND_MAX + 1.0)))) // up / down #define PITCH 0 // left / right #define YAW 1 // fall over #define ROLL 2 vec_t _DotProduct (const vec3_t v1, const vec3_t v2); void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out); void _VectorCopy (const vec3_t in, vec3_t out); int _VectorCompare (const vec3_t v1, const vec3_t v2); // uses EQUAL_EPSILON vec_t _VectorLength (const vec3_t v); void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc); void _VectorScale (const vec3_t in, vec_t scale, vec3_t out); void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out); void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross); vec_t _VectorNormalize (vec3_t v); // returns vector length int Q_log2(int val); void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]); void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]); void FloorDivMod (double numer, double denom, int *quotient, int *rem); fixed16_t Invert24To16(fixed16_t val); fixed16_t Mul16_30(fixed16_t multiplier, fixed16_t multiplicand); int GreatestCommonDivisor (int i1, int i2); /** Convert quake angles to basis vectors. The basis vectors form a left handed system (although the world is right handed). When all angles are 0, \a forward points along the world X axis, \a right along the negative Y axis, and \a up along the Z axis. Rotation is done by: -# Rotating YAW degrees counterclockwise around the local Z axis -# Rotating PITCH degrees clockwise around the new local negative Y axis (or counterclockwise around the new local Y axis). -# Rotating ROLL degrees counterclockwise around the local X axis Thus when used for the player from the first person perspective, positive YAW turns to the left, positive PITCH looks down, and positive ROLL leans to the right. \f[ YAW=\begin{array}{ccc} c_{y} & s_{y} & 0\\ -s_{y} & c_{y} & 0\\ 0 & 0 & 1 \end{array} \f] \f[ PITCH=\begin{array}{ccc} c_{p} & 0 & -s_{p}\\ 0 & 1 & 0\\ s_{p} & 0 & c_{p} \end{array} \f] \f[ ROLL=\begin{array}{ccc} 1 & 0 & 0\\ 0 & c_{r} & -s_{r}\\ 0 & s_{r} & c_{r} \end{array} \f] \f[ ROLL\,(PITCH\,YAW)=\begin{array}{c} forward\\ -right\\ up \end{array} \f] \param angles The rotation angles. \param forward The vector pointing forward. \param right The vector pointing to the right. \param up The vector pointing up. */ void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); void AngleQuat (const vec3_t angles, quat_t q); void VectorVectors (const vec3_t forward, vec3_t right, vec3_t up); int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, struct plane_s *plane); float anglemod (float a); void RotatePointAroundVector (vec3_t dst, const vec3_t axis, const vec3_t point, float degrees); void QuatMult (const quat_t q1, const quat_t q2, quat_t out); void QuatMultVec (const quat_t q, const vec3_t v, vec3_t out); void QuatInverse (const quat_t in, quat_t out); void QuatExp (const quat_t a, quat_t b); void QuatToMatrix (const quat_t q, vec_t *m, int homogenous, int vertical); void Mat4Init (const quat_t rot, const vec3_t scale, const vec3_t trans, mat4_t mat); void Mat4Transpose (const mat4_t a, mat4_t b); int Mat4Inverse (const mat4_t a, mat4_t b); void Mat4Mult (const mat4_t a, const mat4_t b, mat4_t c); void Mat4MultVec (const mat4_t a, const vec3_t b, vec3_t c); /** Decompose a column major matrix into its component transformations. This gives the matrix's rotation as a quaternion, shear, scale (XY, XZ, YZ), and translation. Using the following sequence will give the same result as multiplying \a v by \a mat. QuatMultVec (rot, v, v); VectorShear (shear, v, v); VectorCompMult (scale, v, v); VectorAdd (trans, v, v); */ int Mat4Decompose (const mat4_t mat, quat_t rot, vec3_t shear, vec3_t scale, vec3_t trans); #define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ (((p)->type < 3)? \ ( \ ((p)->dist <= (emins)[(p)->type])? \ 1 \ : \ ( \ ((p)->dist >= (emaxs)[(p)->type])? \ 2 \ : \ 3 \ ) \ ) \ : \ BoxOnPlaneSide( (emins), (emaxs), (p))) #define PlaneDist(point,plane) \ ((plane)->type < 3 ? (point)[(plane)->type] \ : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) \ (PlaneDist (point, plane) - (plane)->dist) #define PlaneFlip(sp, dp) \ do { \ (dp)->dist = -(sp)->dist; \ VectorNegate ((sp)->normal, (dp)->normal); \ } while (0) int16_t FloatToHalf (float x); float HalfToFloat (int16_t x); extern plane_t * const frustum; extern inline qboolean R_CullBox (const vec3_t mins, const vec3_t maxs); extern inline qboolean R_CullSphere (const vec3_t origin, const float radius); extern inline float VectorNormalize (vec3_t v); // returns vector length #ifndef IMPLEMENT_R_Cull extern inline #else VISIBLE #endif qboolean R_CullBox (const vec3_t mins, const vec3_t maxs) { int i; for (i=0 ; i < 4 ; i++) if (BoxOnPlaneSide (mins, maxs, &frustum[i]) == 2) return true; return false; } #ifndef IMPLEMENT_R_Cull extern inline #else VISIBLE #endif qboolean R_CullSphere (const vec3_t origin, const float radius) { int i; float r; for (i = 0; i < 4; i++) { r = DotProduct (origin, frustum[i].normal) - frustum[i].dist; if (r <= -radius) return true; } return false; } #ifndef IMPLEMENT_VectorNormalize extern inline #else VISIBLE #endif float VectorNormalize (vec3_t v) { float length; length = DotProduct (v, v); if (length) { float ilength; length = sqrt (length); ilength = 1.0 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } //@} #endif // __mathlib_h