/* gl_dyn_part.c OpenGL particle system. Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/cmd.h" #include "QF/compat.h" #include "QF/console.h" #include "glquake.h" #include "host.h" #include "r_dynamic.h" #include "QF/qargs.h" #include "QF/sys.h" typedef enum { pt_static, pt_grav, pt_blob, pt_blob2, pt_smoke, pt_smokering, pt_smokecloud, pt_bloodcloud, pt_fadespark, pt_fadespark2, pt_fallfadespark } ptype_t; typedef struct particle_s { vec3_t org; vec3_t up; vec3_t right; int tex; float color; float alpha; float scale; vec3_t vel; float ramp; float die; ptype_t type; } particle_t; typedef struct varray_s { float texcoord[2]; unsigned char color[4]; float vertex[3]; } varray_t; static particle_t *particles, **freeparticles; static short r_numparticles, numparticles; //static varray_t *vertex_array; extern qboolean lighthalf; extern cvar_t *cl_max_particles; extern int part_tex_dot; extern int part_tex_spark; extern int part_tex_smoke[8]; extern int part_tex_smoke_ring[8]; int ramp[8] = { 0x6d, 0x6b, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01 }; inline particle_t * particle_new (ptype_t type, int texnum, vec3_t org, float scale, vec3_t vel, float die, byte color, byte alpha, vec3_t up, vec3_t right) { particle_t *part; if (numparticles >= r_numparticles) { // Con_Printf("FAILED PARTICLE ALLOC!\n"); return NULL; } part = &particles[numparticles++]; part->type = type; VectorCopy (org, part->org); VectorCopy (vel, part->vel); part->die = die; part->color = color; part->alpha = alpha; part->tex = texnum; part->scale = scale; VectorScale (up, 1.5, part->up); VectorScale (right, 1.5, part->right); return part; } inline particle_t * particle_new_random (ptype_t type, int texnum, vec3_t org, int org_fuzz, float scale, int vel_fuzz, float die, byte color, byte alpha) { vec3_t porg, pvel; int j; for (j = 0; j < 3; j++) { if (org_fuzz) porg[j] = lhrandom (-org_fuzz, org_fuzz) + org[j]; if (vel_fuzz) pvel[j] = lhrandom (-vel_fuzz, vel_fuzz); } return particle_new (type, texnum, porg, scale, pvel, die, color, alpha, vec3_origin, vec3_origin); } /* R_MaxParticlesCheck Misty-chan: Dynamically change the maximum amount of particles on the fly. Thanks to a LOT of help from Taniwha, Deek, Mercury, Lordhavoc, and lots of others. */ void R_MaxParticlesCheck (cvar_t *var) { /* Catchall. If the user changed the setting to a number less than zero *or* if we had a wacky cfg get past the init code check, this will make sure we don't have problems. Also note that grabbing the var->int_val is IMPORTANT: Prevents a segfault since if we grabbed the int_val of cl_max_particles we'd sig11 right here at startup. */ r_numparticles = max(var->int_val, 0); /* Enable this to see how many particles are ACTUALLY allocated whenever you do a cl_max_particles change Also note it's damned useful for checking for if this thing is running more than it should! Con_Printf ("%d", r_numparticles); */ // Be very careful the next time we do something like this. calloc/free are IMPORTANT // and the compiler doesn't know when we do bad things with them. free (particles); free (freeparticles); //free (vertex_array); particles = (particle_t *) calloc (r_numparticles, sizeof (particle_t)); freeparticles = (particle_t **) calloc (r_numparticles, sizeof (particle_t*)); //vertex_array = (float *) calloc(r_numparticles, sizeof (varray_t)); R_ClearParticles(); } /* R_Particles_Init_Cvars */ void R_Particles_Init_Cvars (void) { // Misty-chan: This is a cvar that does callbacks. Whenever it // changes, it calls the function R_MaxParticlesCheck and therefore // is very nifty. Cvar_Get ("cl_max_particles", "2048", CVAR_ARCHIVE, R_MaxParticlesCheck, "Maximum amount of particles to display. No maximum, minimum is 0, although it's best to use r_particles 0 instead."); } /* R_ClearParticles */ void R_ClearParticles (void) { numparticles = 0; } void R_ReadPointFile_f (void) { QFile *f; vec3_t org; int r; int c; char name[MAX_OSPATH], *mapname, *t1; mapname = strdup (cl.worldmodel->name); if (!mapname) Sys_Error ("Can't duplicate mapname!"); t1 = strrchr (mapname, '.'); if (!t1) Sys_Error ("Can't find .!"); t1[0] = '\0'; snprintf (name, sizeof (name), "%s.pts", mapname); free (mapname); COM_FOpenFile (name, &f); if (!f) { Con_Printf ("couldn't open %s\n", name); return; } Con_Printf ("Reading %s...\n", name); c = 0; for (;;) { char buf[64]; Qgets (f, buf, sizeof (buf)); r = sscanf (buf, "%f %f %f\n", &org[0], &org[1], &org[2]); if (r != 3) break; c++; if (!particle_new (pt_static, part_tex_dot, org, 1.5, vec3_origin, 99999, (-c) & 15, 255, vec3_origin, vec3_origin)) { Con_Printf ("Not enough free particles\n"); break; } } Qclose (f); Con_Printf ("%i points read\n", c); } /* R_ParticleExplosion */ void R_ParticleExplosion (vec3_t org) { if (!r_particles->int_val) return; particle_new_random (pt_smokecloud, part_tex_smoke[rand () & 7], org, 4, 30, 8, cl.time + 5, (rand () & 7) + 8, 128 + (rand () & 63)); } /* R_BlobExplosion */ void R_BlobExplosion (vec3_t org) { int i; if (!r_particles->int_val) return; for (i = 0; i < 512; i++) { particle_new_random (pt_blob, part_tex_dot, org, 12, 2, 256, (cl.time + 1 + (rand () & 8) * 0.05), (66 + rand () % 6), 255); } for (i = 0; i < 512; i++) { particle_new_random (pt_blob2, part_tex_dot, org, 12, 2, 256, (cl.time + 1 + (rand () & 8) * 0.05), (150 + rand () % 6), 255); } } static void R_RunSparkEffect (vec3_t org, int count, int ofuzz) { if (!r_particles->int_val) return; particle_new (pt_smokecloud, part_tex_smoke[rand () & 7], org, (ofuzz / 8) * .75, vec3_origin, cl.time + 99, 12 + (rand () & 3), 96, vec3_origin, vec3_origin); while (count--) particle_new_random (pt_fallfadespark, part_tex_spark, org, ofuzz * .75, 1, 96, cl.time + 5, ramp[rand () % 6], lhrandom (0, 255)); } static void R_RunGunshotEffect (vec3_t org, int count) { int scale; if (!r_particles->int_val) return; if (count > 6) scale = 3; else scale = 2; R_RunSparkEffect (org, count * 10, 8 * scale); return; } static void R_BloodPuff (vec3_t org, int count) { if (!r_particles->int_val) return; particle_new (pt_bloodcloud, part_tex_smoke[rand () & 7], org, 9, vec3_origin, cl.time + 99, 68 + (rand () & 3), 128, vec3_origin, vec3_origin); } /* R_RunPuffEffect */ void R_RunPuffEffect (vec3_t org, byte type, byte count) { if (!r_particles->int_val) return; switch (type) { case TE_GUNSHOT: R_RunGunshotEffect (org, count); break; case TE_BLOOD: R_BloodPuff (org, count); break; case TE_LIGHTNINGBLOOD: R_BloodPuff (org, 5 + (rand () & 1)); break; } } /* R_RunParticleEffect */ void R_RunParticleEffect (vec3_t org, int color, int count) { int i, j, scale; vec3_t porg; if (!r_particles->int_val) return; if (count > 130) scale = 3; else if (count > 20) scale = 2; else scale = 1; for (i = 0; i < count; i++) { for (j = 0; j < 3; j++) { porg[j] = org[j] + scale * ((rand () & 15) - 8); } particle_new (pt_grav, part_tex_dot, porg, 1.5, vec3_origin, (cl.time + 0.1 * (rand () % 5)), (color & ~7) + (rand () & 7), 255, vec3_origin, vec3_origin); } } void R_RunSpikeEffect (vec3_t org, byte type) { switch (type) { case TE_SPIKE: R_RunSparkEffect (org, 5, 8); break; case TE_SUPERSPIKE: R_RunSparkEffect (org, 10, 8); break; case TE_KNIGHTSPIKE: R_RunSparkEffect (org, 10, 8); break; case TE_WIZSPIKE: R_RunSparkEffect (org, 15, 16); break; } } /* R_LavaSplash */ void R_LavaSplash (vec3_t org) { int i, j; float vel; vec3_t dir, porg, pvel; if (!r_particles->int_val) return; for (i = -8; i < 8; i++) { for (j = -8; j < 8; j++) { dir[0] = j * 16 + (rand () & 7); dir[1] = i * 16 + (rand () & 7); dir[2] = 256; porg[0] = org[0] + dir[0]; porg[1] = org[1] + dir[1]; porg[2] = org[2] + (rand () & 63); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, pvel); particle_new (pt_grav, part_tex_dot, porg, 3, pvel, (cl.time + 2 + (rand () & 31) * 0.02), (224 + (rand () & 7)), 193, vec3_origin, vec3_origin); } } } /* R_TeleportSplash */ void R_TeleportSplash (vec3_t org) { int i, j, k; float vel; vec3_t dir, porg, pvel; if (!r_particles->int_val) return; for (i = -16; i < 16; i += 4) for (j = -16; j < 16; j += 4) for (k = -24; k < 32; k += 4) { dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; porg[0] = org[0] + i + (rand () & 3); porg[1] = org[1] + j + (rand () & 3); porg[2] = org[2] + k + (rand () & 3); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, pvel); particle_new (pt_grav, part_tex_spark, porg, 0.6, pvel, (cl.time + 0.2 + (rand () & 7) * 0.02), (7 + (rand () & 7)), 255, vec3_origin, vec3_origin); } } void R_RocketTrail (int type, entity_t *ent) { vec3_t vec, subtract; float len, dist; int j, ptex; ptype_t ptype; vec3_t porg, pvel, up, right; float pdie, pscale; byte palpha, pcolor; if (type == 0) R_AddFire (ent->old_origin, ent->origin, ent); if (!r_particles->int_val) return; VectorSubtract (ent->origin, ent->old_origin, vec); len = VectorNormalize (vec); while (len > 0) { VectorCopy (vec3_origin, up); VectorCopy (vec3_origin, right); VectorCopy (vec3_origin, pvel); pdie = cl.time + 2; ptype = pt_static; ptex = part_tex_dot; palpha = 255; pcolor = 0; pscale = 6; dist = 40; switch (type) { case 0: // rocket trail pdie = cl.time + 60; ptype = pt_smokering; pscale = lhrandom (9, 12); // Misty-chan: Temporary easter egg pcolor = (rand () & 255); // pcolor = (rand () & 3) + 12; palpha = 128 + (rand () & 31); VectorVectors(vec, right, up); VectorCopy (ent->old_origin, porg); ptex = part_tex_smoke_ring[rand () & 7]; break; case 1: // grenade trail ptype = pt_smoke; pscale = lhrandom (6, 9); // Misty-chan: Temporary easter egg. pcolor = (rand () & 255); // pcolor = (rand () & 2); palpha = 128 + (rand () & 31); VectorCopy (ent->old_origin, porg); ptex = part_tex_smoke[rand () & 7]; break; case 2: // blood pscale = 12; case 4: // slight blood pscale += lhrandom (0, 3); ptex = part_tex_smoke[rand () & 7]; pcolor = 68 + (rand () & 3); for (j = 0; j < 3; j++) { pvel[j] = lhrandom (-3, 3) * type; porg[j] = ent->old_origin[j] + lhrandom (-1.5, 1.5); } ptype = pt_grav; break; case 6: // voor trail // Use smoke ring effects here, once merged with nq? --Despair dist = 3; pcolor = 9 * 16 + 8 + (rand () & 3); ptype = pt_static; pscale = lhrandom (.75, 1.5); pdie = cl.time + 0.3; for (j = 0; j < 3; j++) porg[j] = ent->old_origin[j] + lhrandom (-8, 8); break; case 3: case 5: // tracer { static int tracercount; dist = 3; pdie = cl.time + 0.5; ptype = pt_static; pscale = lhrandom (1.5, 3); if (type == 3) pcolor = 52 + ((tracercount & 4) << 1); else pcolor = 230 + ((tracercount & 4) << 1); tracercount++; VectorCopy (ent->old_origin, porg); if (tracercount & 1) { pvel[0] = 30 * vec[1]; pvel[1] = 30 * -vec[0]; } else { pvel[0] = 30 * -vec[1]; pvel[1] = 30 * vec[0]; } break; } } VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); len -= dist; particle_new (ptype, ptex, porg, pscale, pvel, pdie, pcolor, palpha, up, right); } } /* R_DrawParticles */ void R_DrawParticles (void) { byte i; float grav, fast_grav, dvel; float minparticledist; unsigned char *at; byte alpha; float scale; particle_t *part; vec3_t up, right, o_up, o_right; vec3_t up_scale, right_scale, up_right_scale; int activeparticles, maxparticle, j, k, vnum; varray_t vertex_array[4]; // LordHavoc: particles should not affect zbuffer glDepthMask (GL_FALSE); VectorScale (vup, 1.5, o_up); VectorScale (vright, 1.5, o_right); glInterleavedArrays (GL_T2F_C4UB_V3F, 0, (void *) &(vertex_array[0])); vertex_array[0].texcoord[0] = 0; vertex_array[0].texcoord[1] = 1; vertex_array[1].texcoord[0] = 0; vertex_array[1].texcoord[1] = 0; vertex_array[2].texcoord[0] = 1; vertex_array[2].texcoord[1] = 0; vertex_array[3].texcoord[0] = 1; vertex_array[3].texcoord[1] = 1; vnum = 0; grav = (fast_grav = host_frametime * 800) * 0.05; dvel = 4 * host_frametime; minparticledist = DotProduct (r_refdef.vieworg, vpn) + 32.0f; activeparticles = 0; maxparticle = -1; j = 0; for (k = 0, part = particles; k < numparticles; k++, part++) { // LordHavoc: this is probably no longer necessary, as it is checked at the end, but could still happen on weird particle effects, left for safety... if (part->die <= cl.time) { freeparticles[j++] = part; continue; } maxparticle = k; activeparticles++; // Don't render particles too close to us. // Note, we must still do physics and such on them. if (!(DotProduct (part->org, vpn) < minparticledist) && r_particles->int_val) { at = (byte *) & d_8to24table[(byte) part->color]; alpha = part->alpha; if (VectorCompare(part->up, part->right)) { memcpy(up, o_up, sizeof(up)); memcpy(right, o_right, sizeof(right)); } else { memcpy(up, part->up, sizeof(up)); memcpy(right, part->right, sizeof(right)); } if (lighthalf) { vertex_array[0].color[0] = (byte) ((int) at[0] >> 1); vertex_array[0].color[1] = (byte) ((int) at[1] >> 1); vertex_array[0].color[2] = (byte) ((int) at[2] >> 1); } else { memcpy(vertex_array[0].color, at, 3); } vertex_array[0].color[3] = alpha; memcpy(vertex_array[1].color, vertex_array[0].color, 4); memcpy(vertex_array[2].color, vertex_array[0].color, 4); memcpy(vertex_array[3].color, vertex_array[0].color, 4); scale = part->scale; up_scale[0] = up[0] * scale; up_scale[1] = up[1] * scale; up_scale[2] = up[2] * scale; right_scale[0] = right[0] * scale; right_scale[1] = right[1] * scale; right_scale[2] = right[2] * scale; up_right_scale[0] = (up[0] + right[0]) * scale; up_right_scale[1] = (up[1] + right[1]) * scale; up_right_scale[2] = (up[2] + right[2]) * scale; vertex_array[0].vertex[0] = part->org[0] + up_right_scale[0]; vertex_array[0].vertex[1] = part->org[1] + up_right_scale[1]; vertex_array[0].vertex[2] = part->org[2] + up_right_scale[2]; vertex_array[1].vertex[0] = part->org[0] + (-up_scale[0]) + right_scale[0]; vertex_array[1].vertex[1] = part->org[1] + (-up_scale[1]) + right_scale[1]; vertex_array[1].vertex[2] = part->org[2] + (-up_scale[2]) + right_scale[2]; vertex_array[2].vertex[0] = part->org[0] + -up_right_scale[0]; vertex_array[2].vertex[1] = part->org[1] + -up_right_scale[1]; vertex_array[2].vertex[2] = part->org[2] + -up_right_scale[2]; vertex_array[3].vertex[0] = part->org[0] + up_scale[0] + (-right_scale[0]); vertex_array[3].vertex[1] = part->org[1] + up_scale[1] + (-right_scale[1]); vertex_array[3].vertex[2] = part->org[2] + up_scale[2] + (-right_scale[2]); /* */ /* vertex_array[0].vertex[0] = (part->org[0] + ((up[0] + right[0]) * scale)); vertex_array[0].vertex[1] = (part->org[1] + ((up[1] + right[1]) * scale)); vertex_array[0].vertex[2] = (part->org[2] + ((up[2] + right[2]) * scale)); vertex_array[1].vertex[0] = (part->org[0] + (up[0] * -scale) + (right[0] * scale)); vertex_array[1].vertex[1] = (part->org[1] + (up[1] * -scale) + (right[1] * scale)); vertex_array[1].vertex[2] = (part->org[2] + (up[2] * -scale) + (right[2] * scale)); vertex_array[2].vertex[0] = (part->org[0] + ((up[0] + right[0]) * -scale)); vertex_array[2].vertex[1] = (part->org[1] + ((up[1] + right[1]) * -scale)); vertex_array[2].vertex[2] = (part->org[2] + ((up[2] + right[2]) * -scale)); vertex_array[3].vertex[0] = (part->org[0] + (up[0] * scale) + (right[0] * -scale)); vertex_array[3].vertex[1] = (part->org[1] + (up[1] * scale) + (right[1] * -scale)); vertex_array[3].vertex[2] = (part->org[2] + (up[2] * scale) + (right[2] * -scale)); */ glBindTexture (GL_TEXTURE_2D, part->tex); glDrawArrays (GL_QUADS, 0, 4); } for (i = 0; i < 3; i++) part->org[i] += part->vel[i] * host_frametime; switch (part->type) { case pt_static: break; case pt_blob: for (i = 0; i < 3; i++) part->vel[i] += part->vel[i] * dvel; part->vel[2] -= grav; break; case pt_blob2: for (i = 0; i < 2; i++) part->vel[i] -= part->vel[i] * dvel; part->vel[2] -= grav; break; case pt_grav: part->vel[2] -= grav; break; case pt_smoke: if ((part->alpha -= host_frametime * 90) < 1) part->die = -1; part->scale += host_frametime * 6; part->org[2] += host_frametime * 30; break; case pt_smokering: if ((part->alpha -= host_frametime * 130) < 1) part->die = -1; part->scale += host_frametime * 10; part->org[2] += host_frametime * 30; break; case pt_smokecloud: if ((part->alpha -= host_frametime * 128) < 1) part->die = -1; part->scale += host_frametime * 60; part->org[2] += host_frametime * 90; break; case pt_bloodcloud: /* if (Mod_PointInLeaf(part->org, cl.worldmodel)->contents != CONTENTS_EMPTY) { part->die = -1; break; } */ if ((part->alpha -= host_frametime * 64) < 1) { part->die = -1; // extra break only helps here break; } part->scale += host_frametime * 4; part->vel[2] -= grav; break; case pt_fadespark: if ((part->alpha -= host_frametime * 256) < 1) part->die = -1; part->vel[2] -= grav; break; case pt_fadespark2: if ((part->alpha -= host_frametime * 512) < 1) part->die = -1; part->vel[2] -= grav; break; case pt_fallfadespark: if ((part->alpha -= host_frametime * 256) < 1) part->die = -1; part->vel[2] -= fast_grav; break; } // LordHavoc: immediate removal of unnecessary particles (must be done to ensure compactor below operates properly in all cases) if (part->die <= cl.time) freeparticles[j++] = part; } k = 0; while (maxparticle >= activeparticles) { *freeparticles[k++] = particles[maxparticle--]; while (maxparticle >= activeparticles && particles[maxparticle].die <= cl.time) maxparticle--; } numparticles = activeparticles; glColor3ubv (lighthalf_v); glDepthMask (GL_TRUE); }