/* function.c QC function support code Copyright (C) 2002 Bill Currie Author: Bill Currie Date: 2002/5/7 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/alloc.h" #include "QF/dstring.h" #include "QF/hash.h" #include "QF/va.h" #include "tools/qfcc/include/qfcc.h" #include "tools/qfcc/include/class.h" #include "tools/qfcc/include/codespace.h" #include "tools/qfcc/include/debug.h" #include "tools/qfcc/include/def.h" #include "tools/qfcc/include/defspace.h" #include "tools/qfcc/include/diagnostic.h" #include "tools/qfcc/include/emit.h" #include "tools/qfcc/include/expr.h" #include "tools/qfcc/include/flow.h" #include "tools/qfcc/include/function.h" #include "tools/qfcc/include/opcodes.h" #include "tools/qfcc/include/options.h" #include "tools/qfcc/include/reloc.h" #include "tools/qfcc/include/shared.h" #include "tools/qfcc/include/statements.h" #include "tools/qfcc/include/strpool.h" #include "tools/qfcc/include/symtab.h" #include "tools/qfcc/include/type.h" #include "tools/qfcc/include/value.h" ALLOC_STATE (param_t, params); ALLOC_STATE (function_t, functions); ALLOC_STATE (genfunc_t, genfuncs); static hashtab_t *generic_functions; static hashtab_t *overloaded_functions; static hashtab_t *function_map; // standardized base register to use for all locals (arguments, local defs, // params) #define LOCALS_REG 1 // keep the stack aligned to 8 words (32 bytes) so lvec etc can be used without // having to do shenanigans with mixed-alignment stack frames #define STACK_ALIGN 8 static const char * gen_func_get_key (const void *_f, void *unused) { auto f = (genfunc_t *) _f; return f->name; } static const char * ol_func_get_key (const void *_f, void *unused) { overloaded_function_t *f = (overloaded_function_t *) _f; return f->full_name; } static const char * func_map_get_key (const void *_f, void *unused) { overloaded_function_t *f = (overloaded_function_t *) _f; return f->name; } static void check_generic_param (genparam_t *param, genfunc_t *genfunc) { if (param->gentype < 0 || param->gentype >= genfunc->num_types) { internal_error (0, "invalid type index %d on %s for %s", param->gentype, param->name, genfunc->name); } } static bool __attribute__((pure)) cmp_genparams (genfunc_t *g1, genparam_t *p1, genfunc_t *g2, genparam_t *p2) { if (p1->fixed_type || p2->fixed_type) { return p1->fixed_type == p2->fixed_type; } // fixed_type for both p1 and p2 is null auto t1 = g1->types[p1->gentype]; auto t2 = g2->types[p2->gentype]; if (t1.compute || t2.compute) { // FIXME probably not right return t1.compute == t2.compute; } auto vt1 = t1.valid_types; auto vt2 = t2.valid_types; for (; *vt1 && *vt2 && *vt1 == *vt2; vt1++, vt2++) continue; return *vt1 == *vt2; } void add_generic_function (genfunc_t *genfunc) { for (int i = 0; i < genfunc->num_types; i++) { auto gentype = &genfunc->types[i]; if (gentype->compute && gentype->valid_types) { internal_error (0, "both compute and valid_types set in " "generic type"); } for (auto type = gentype->valid_types; type && *type; type++) { if (is_void (*type)) { internal_error (0, "void in list of valid types"); } } } int gen_params = 0; for (int i = 0; i < genfunc->num_params; i++) { auto param = &genfunc->params[i]; if (!param->fixed_type) { gen_params++; check_generic_param (param, genfunc); } } if (!gen_params) { internal_error (0, "%s has no generic parameters", genfunc->name); } if (!genfunc->ret_type) { internal_error (0, "%s has no return type", genfunc->name); } check_generic_param (genfunc->ret_type, genfunc); bool is_new = true; genfunc_t *old = Hash_Find (generic_functions, genfunc->name); if (old && old->num_params == genfunc->num_params) { is_new = false; for (int i = 0; i < genfunc->num_params; i++) { if (!cmp_genparams (genfunc, &genfunc->params[i], old, &old->params[i])) { is_new = true; break; } } if (!is_new && !cmp_genparams (genfunc, genfunc->ret_type, old, old->ret_type)) { error (0, "can't overload on return types"); return; } } if (is_new) { Hash_Add (generic_functions, genfunc); } else { for (int i = 0; i < genfunc->num_types; i++) { auto gentype = &genfunc->types[i]; free (gentype->valid_types); } free (genfunc->types); FREE (genfuncs, genfunc); } } static gentype_compute_f check_compute_type (const expr_t *expr) { return nullptr; } static const type_t ** valid_type_list (const expr_t *expr) { if (expr->type != ex_list) { return expand_type (expr); } int count = list_count (&expr->list); const expr_t *type_refs[count]; list_scatter (&expr->list, type_refs); const type_t **types = malloc (sizeof (type_t *[count + 1])); types[count] = nullptr; bool err = false; for (int i = 0; i < count; i++) { if (!(types[i] = resolve_type (type_refs[i]))) { error (type_refs[i], "not a constant type ref"); err = true; } } if (err) { free (types); return nullptr; } return types; } static gentype_t make_gentype (const expr_t *expr) { if (expr->type != ex_symbol || expr->symbol->sy_type != sy_type_param) { internal_error (expr, "expected generic type name"); } auto sym = expr->symbol; gentype_t gentype = { .name = save_string (sym->name), .compute = check_compute_type (sym->expr), .valid_types = valid_type_list (sym->expr), }; if (gentype.compute && gentype.valid_types) { internal_error (expr, "both computed type and type list"); } if (!gentype.compute && !gentype.valid_types) { internal_error (expr, "empty generic type"); } return gentype; } static int find_gentype (const expr_t *expr, genfunc_t *genfunc) { if (expr->type != ex_symbol) { return -1; } const char *name = expr->symbol->name; for (int i = 0; i < genfunc->num_types; i++) { auto t = &genfunc->types[i]; if (strcmp (name, t->name) == 0) { return i; } } return -1; } static genparam_t make_genparam (param_t *param, genfunc_t *genfunc) { genparam_t genparam = { .name = save_string (param->name), .fixed_type = param->type, .gentype = find_gentype (param->type_expr, genfunc), }; return genparam; } static genfunc_t * parse_generic_function (const char *name, specifier_t spec) { if (!spec.is_generic) { return nullptr; } // fake parameter for the return type param_t ret_param = { .next = spec.sym->params, .type = spec.sym->type->func.ret_type, .type_expr = spec.type_expr, }; int num_params = 0; int num_gentype = 0; for (auto p = &ret_param; p; p = p->next) { num_params++; } auto generic_tab = spec.symtab; for (auto s = generic_tab->symbols; s; s = s->next) { bool found = false; for (auto q = &ret_param; q; q = q->next) { // FIXME check complex expressions if (!q->type_expr || q->type_expr->type != ex_symbol) { continue; } if (strcmp (q->type_expr->symbol->name, s->name) == 0) { num_gentype++; found = true; break; } } if (!spec.is_generic_block && !found) { warning (0, "generic parameter %s not used", s->name); } } genfunc_t *genfunc; ALLOC (4096, genfunc_t, genfuncs, genfunc); *genfunc = (genfunc_t) { .name = save_string (name), .types = malloc (sizeof (gentype_t[num_gentype]) + sizeof (genparam_t[num_params])), .num_types = num_gentype, .num_params = num_params - 1, // don't count return type }; genfunc->params = (genparam_t *) &genfunc->types[num_gentype]; genfunc->ret_type = &genfunc->params[num_params - 1]; num_gentype = 0; for (auto s = generic_tab->symbols; s; s = s->next) { for (auto q = &ret_param; q; q = q->next) { // FIXME check complex expressions if (!q->type_expr || q->type_expr->type != ex_symbol) { continue; } if (strcmp (q->type_expr->symbol->name, s->name) == 0) { genfunc->types[num_gentype++] = make_gentype (q->type_expr); break; } } } num_params = 0; for (auto p = ret_param.next; p; p = p->next) { genfunc->params[num_params++] = make_genparam (p, genfunc); } *genfunc->ret_type = make_genparam (&ret_param, genfunc); return genfunc; } param_t * new_param (const char *selector, const type_t *type, const char *name) { param_t *param; ALLOC (4096, param_t, params, param); *param = (param_t) { .selector = selector, .type = find_type (type), .name = name, }; return param; } param_t * new_generic_param (const expr_t *type_expr, const char *name) { param_t *param; ALLOC (4096, param_t, params, param); *param = (param_t) { .type_expr = type_expr, .name = name, }; return param; } param_t * param_append_identifiers (param_t *params, symbol_t *idents, const type_t *type) { param_t **p = ¶ms; while (*p) p = &(*p)->next; if (!idents) { *p = new_param (0, 0, 0); p = &(*p)->next; } while (idents) { idents->type = type; *p = new_param (0, type, idents->name); p = &(*p)->next; idents = idents->next; } return params; } static param_t * _reverse_params (param_t *params, param_t *next) { param_t *p = params; if (params->next) p = _reverse_params (params->next, params); params->next = next; return p; } param_t * reverse_params (param_t *params) { if (!params) return 0; return _reverse_params (params, 0); } param_t * append_params (param_t *params, param_t *more_params) { if (params) { param_t *p; for (p = params; p->next; ) { p = p->next; } p->next = more_params; return params; } return more_params; } param_t * copy_params (param_t *params) { param_t *n_parms = 0, **p = &n_parms; while (params) { *p = new_param (params->selector, params->type, params->name); params = params->next; p = &(*p)->next; } return n_parms; } const type_t * parse_params (const type_t *return_type, param_t *parms) { param_t *p; type_t *new; int count = 0; if (return_type && is_class (return_type)) { error (0, "cannot return an object (forgot *?)"); return_type = &type_id; } new = new_type (); new->type = ev_func; new->alignment = 1; new->width = 1; new->columns = 1; new->func.ret_type = return_type; new->func.num_params = 0; for (p = parms; p; p = p->next) { if (p->type) { count++; } } if (count) { new->func.param_types = malloc (count * sizeof (type_t)); } for (p = parms; p; p = p->next) { if (!p->selector && !p->type && !p->name) { if (p->next) internal_error (0, 0); new->func.num_params = -(new->func.num_params + 1); } else if (p->type) { if (is_class (p->type)) { error (0, "cannot use an object as a parameter (forgot *?)"); p->type = &type_id; } auto ptype = unalias_type (p->type); new->func.param_types[new->func.num_params] = ptype; new->func.num_params++; } } return new; } param_t * check_params (param_t *params) { int num = 1; param_t *p = params; if (!params) return 0; while (p) { if (p->type && is_void(p->type)) { if (p->name) { error (0, "parameter %d ('%s') has incomplete type", num, p->name); p->type = type_default; } else if (num > 1 || p->next) { error (0, "'void' must be the only parameter"); p->name = "void"; } else { // this is a void function return 0; } } p = p->next; } return params; } static overloaded_function_t * get_function (const char *name, const type_t *type, specifier_t spec) { auto genfunc = parse_generic_function (name, spec); //FIXME want to be able to provide specific overloads for generic functions //but need to figure out details, so disallow for now. if (genfunc) { if (Hash_Find (function_map, name)) { error (0, "can't mix generic and overload"); return nullptr; } add_generic_function (genfunc); return nullptr;// FIXME } if (Hash_Find (generic_functions, name)) { error (0, "can't mix generic and overload"); return nullptr; } bool overload = spec.is_overload; const char *full_name; full_name = save_string (va (0, "%s|%s", name, encode_params (type))); overloaded_function_t *func; // check if the exact function signature already exists, in which case // simply return it. func = Hash_Find (overloaded_functions, full_name); if (func) { if (func->type != type) { error (0, "can't overload on return types"); return func; } return func; } func = Hash_Find (function_map, name); if (func) { if (!overload && !func->overloaded) { warning (0, "creating overloaded function %s without @overload", full_name); warning (&(expr_t) { .loc = func->loc }, "(previous function is %s)", func->full_name); } overload = true; } func = malloc (sizeof (overloaded_function_t)); *func = (overloaded_function_t) { .name = save_string (name), .full_name = full_name, .type = type, .overloaded = overload, .loc = pr.loc, }; Hash_Add (overloaded_functions, func); Hash_Add (function_map, func); return func; } symbol_t * function_symbol (symbol_t *sym, specifier_t spec) { const char *name = sym->name; overloaded_function_t *func; symbol_t *s; func = get_function (name, unalias_type (sym->type), spec); if (func && func->overloaded) name = func->full_name; s = symtab_lookup (current_symtab, name); if (!s || s->table != current_symtab) { s = new_symbol (name); s->sy_type = sy_func; s->type = unalias_type (sym->type); s->params = sym->params; s->func = 0; // function not yet defined symtab_addsymbol (current_symtab, s); } return s; } // NOTE sorts the list in /reverse/ order static int func_compare (const void *a, const void *b) { overloaded_function_t *fa = *(overloaded_function_t **) a; overloaded_function_t *fb = *(overloaded_function_t **) b; const type_t *ta = fa->type; const type_t *tb = fb->type; int na = ta->func.num_params; int nb = tb->func.num_params; int ret, i; if (na < 0) na = ~na; if (nb < 0) nb = ~nb; if (na != nb) return nb - na; if ((ret = (tb->func.num_params - ta->func.num_params))) return ret; for (i = 0; i < na && i < nb; i++) { auto diff = tb->func.param_types[i] - ta->func.param_types[i]; if (diff) { return diff < 0 ? -1 : 1; } } return 0; } static const expr_t * set_func_symbol (const expr_t *fexpr, overloaded_function_t *f) { auto sym = symtab_lookup (current_symtab, f->full_name); if (!sym) { internal_error (fexpr, "overloaded function %s not found", f->full_name); } auto nf = new_expr (); *nf = *fexpr; nf->symbol = sym; return nf; } static const type_t * __attribute__((pure)) select_type (gentype_t *gentype, const type_t *param_type) { for (auto t = gentype->valid_types; t && *t; t++) { if (*t == param_type || type_promotes (*t, param_type)) { return *t; } } return nullptr; } static bool check_type (const type_t *type, const type_t *param_type, unsigned *cost) { if (type != param_type) { if (type_promotes (type, param_type)) { *cost += 1; } else { return false; } } return true; } static const expr_t * find_generic_function (const expr_t *fexpr, genfunc_t **genfuncs, const type_t *call_type) { int num_funcs = 0; for (auto gf = genfuncs; *gf; gf++, num_funcs++) continue; unsigned costs[num_funcs] = {}; int num_params = call_type->func.num_params; auto call_params = call_type->func.param_types; for (int j = 0; j < num_funcs; j++) { auto g = genfuncs[j]; if (g->num_params != num_params) { continue; } const type_t *types[g->num_types] = {}; bool ok = true; for (int i = 0; ok && i < num_params; i++) { auto p = &g->params[i]; if (!p->fixed_type) { int ind = p->gentype; if (!types[ind]) { types[ind] = select_type (&g->types[ind], call_params[i]); } ok &= check_type (types[ind], call_params[i], costs + j); } else { ok &= check_type (p->fixed_type, call_params[i], costs + j); } } if (!ok) { costs[j] = ~0u; } } auto fsym = fexpr->symbol; unsigned best_cost = ~0u; int best_ind = -1; for (int i = 0; i < num_funcs; i++) { if (best_ind >= 0 && costs[i] == best_cost) { return error (fexpr, "unable to disambiguate %s", fsym->name); } if (costs[i] < best_cost) { best_ind = i; best_cost = costs[i]; } } if (best_ind < 0) { return error (fexpr, "unable to find generic function matching %s", fsym->name); } auto g = genfuncs[best_ind]; const type_t *types[g->num_types] = {}; const type_t *param_types[num_params]; const type_t *return_type; for (int i = 0; i < num_params; i++) { auto p = &g->params[i]; if (!p->fixed_type) { int ind = p->gentype; if (!types[ind]) { types[ind] = select_type (&g->types[ind], call_params[i]); } param_types[i] = types[ind]; } else { param_types[i] = p->fixed_type; } } if (!g->ret_type->fixed_type) { int ind = g->ret_type->gentype; if (!types[ind]) { internal_error (0, "return type not determined"); } return_type = types[ind]; } else { return_type = g->ret_type->fixed_type; } param_t *params = nullptr; for (int i = 0; i < num_params; i++) { param_types[i] = unalias_type (param_types[i]); params = append_params (params, new_param (nullptr, param_types[i], g->params[i].name)); } return_type = unalias_type (return_type); type_t ftype = { .type = ev_func, .func = { .ret_type = return_type, .num_params = num_params, .param_types = param_types, }, }; auto type = find_type (&ftype); auto name = g->name; auto full_name = save_string (va (0, "%s|%s", name, encode_params (type))); auto sym = symtab_lookup (fsym->table, full_name); if (!sym || sym->table != fsym->table) { sym = new_symbol (full_name); sym->sy_type = sy_func; sym->type = type; sym->params = params; sym->func = nullptr; symtab_addsymbol (fsym->table, sym); } return new_symbol_expr (sym); } const expr_t * find_function (const expr_t *fexpr, const expr_t *params) { int func_count, parm_count, reported = 0; overloaded_function_t dummy, *best = 0; void *dummy_p = &dummy; if (fexpr->type != ex_symbol) { return fexpr; } int num_params = params ? list_count (¶ms->list) : 0; const type_t *arg_types[num_params + 1]; const expr_t *args[num_params + 1]; if (params) { list_scatter_rev (¶ms->list, args); } for (int i = 0; i < num_params; i++) { auto e = args[i]; if (e->type == ex_error) { return e; } arg_types[i] = get_type (e); } type_t call_type = { .type = ev_func, .func = { .num_params = num_params, .param_types = arg_types, }, }; const char *fname = fexpr->symbol->name; auto genfuncs = (genfunc_t **) Hash_FindList (generic_functions, fname); if (genfuncs) { return find_generic_function (fexpr, genfuncs, &call_type); } auto funcs = (overloaded_function_t **) Hash_FindList (function_map, fname); if (!funcs) return fexpr; for (func_count = 0; funcs[func_count]; func_count++) continue; if (func_count < 2) { if (func_count && !funcs[0]->overloaded) { free (funcs); return fexpr; } } call_type.func.ret_type = funcs[0]->type->func.ret_type; dummy.type = find_type (&call_type); qsort (funcs, func_count, sizeof (void *), func_compare); dummy.full_name = save_string (va (0, "%s|%s", fexpr->symbol->name, encode_params (&call_type))); dummy_p = bsearch (&dummy_p, funcs, func_count, sizeof (void *), func_compare); if (dummy_p) { auto f = (overloaded_function_t *) *(void **) dummy_p; if (f->overloaded) { fexpr = set_func_symbol (fexpr, f); } free (funcs); return fexpr; } for (int i = 0; i < func_count; i++) { auto f = (overloaded_function_t *) funcs[i]; parm_count = f->type->func.num_params; if ((parm_count >= 0 && parm_count != call_type.func.num_params) || (parm_count < 0 && ~parm_count > call_type.func.num_params)) { funcs[i] = 0; continue; } if (parm_count < 0) parm_count = ~parm_count; int j; for (j = 0; j < parm_count; j++) { if (!type_assignable (f->type->func.param_types[j], call_type.func.param_types[j])) { funcs[i] = 0; break; } } if (j < parm_count) continue; } for (int i = 0; i < func_count; i++) { auto f = (overloaded_function_t *) funcs[i]; if (f) { if (!best) { best = f; } else { if (!reported) { reported = 1; error (fexpr, "unable to disambiguate %s", dummy.full_name); error (fexpr, "possible match: %s", best->full_name); } error (fexpr, "possible match: %s", f->full_name); } } } if (reported) return fexpr; if (best) { if (best->overloaded) { fexpr = set_func_symbol (fexpr, best); } free (funcs); return fexpr; } error (fexpr, "unable to find function matching %s", dummy.full_name); free (funcs); return fexpr; } int value_too_large (const type_t *val_type) { if ((options.code.progsversion < PROG_VERSION && type_size (val_type) > type_size (&type_param)) || (options.code.progsversion == PROG_VERSION && type_size (val_type) > MAX_DEF_SIZE)) { return 1; } return 0; } static void check_function (symbol_t *fsym) { param_t *params = fsym->params; param_t *p; int i; if (!type_size (fsym->type->func.ret_type)) { error (0, "return type is an incomplete type"); //fsym->type->func.type = &type_void;//FIXME better type? } if (value_too_large (fsym->type->func.ret_type)) { error (0, "return value too large to be passed by value (%d)", type_size (&type_param)); //fsym->type->func.type = &type_void;//FIXME better type? } for (p = params, i = 0; p; p = p->next, i++) { if (!p->selector && !p->type && !p->name) continue; // ellipsis marker if (!p->type) continue; // non-param selector if (!type_size (p->type)) { error (0, "parameter %d (ā€˜%sā€™) has incomplete type", i + 1, p->name); } if (value_too_large (p->type)) { error (0, "param %d (ā€˜%sā€™) is too large to be passed by value", i + 1, p->name); } } } static void build_v6p_scope (symbol_t *fsym) { int i; param_t *p; symbol_t *args = 0; symbol_t *param; symtab_t *parameters = fsym->func->parameters; symtab_t *locals = fsym->func->locals; if (fsym->func->type->func.num_params < 0) { args = new_symbol_type (".args", &type_va_list); initialize_def (args, 0, parameters->space, sc_param, locals); } for (p = fsym->params, i = 0; p; p = p->next) { if (!p->selector && !p->type && !p->name) continue; // ellipsis marker if (!p->type) continue; // non-param selector if (!p->name) { error (0, "parameter name omitted"); p->name = save_string (""); } param = new_symbol_type (p->name, p->type); initialize_def (param, 0, parameters->space, sc_param, locals); i++; } if (args) { while (i < PR_MAX_PARAMS) { param = new_symbol_type (va (0, ".par%d", i), &type_param); initialize_def (param, 0, parameters->space, sc_param, locals); i++; } } } static void create_param (symtab_t *parameters, symbol_t *param) { defspace_t *space = parameters->space; def_t *def = new_def (param->name, 0, space, sc_param); int size = type_size (param->type); int alignment = param->type->alignment; if (alignment < 4) { alignment = 4; } def->offset = defspace_alloc_aligned_highwater (space, size, alignment); def->type = param->type; param->def = def; param->sy_type = sy_var; symtab_addsymbol (parameters, param); if (is_vector(param->type) && options.code.vector_components) init_vector_components (param, 0, parameters); } static void build_rua_scope (symbol_t *fsym) { for (param_t *p = fsym->params; p; p = p->next) { symbol_t *param; if (!p->selector && !p->type && !p->name) { // ellipsis marker param = new_symbol_type (".args", &type_va_list); } else { if (!p->type) { continue; // non-param selector } if (!p->name) { error (0, "parameter name omitted"); p->name = save_string (""); } param = new_symbol_type (p->name, p->type); } create_param (fsym->func->parameters, param); param->def->reg = fsym->func->temp_reg; } } static void build_scope (symbol_t *fsym, symtab_t *parent) { symtab_t *parameters; symtab_t *locals; if (!fsym->func) { internal_error (0, "function %s not defined", fsym->name); } if (!is_func (fsym->func->type)) { internal_error (0, "function type %s not a funciton", fsym->name); } check_function (fsym); fsym->func->label_scope = new_symtab (0, stab_label); parameters = new_symtab (parent, stab_param); parameters->space = defspace_new (ds_virtual); fsym->func->parameters = parameters; locals = new_symtab (parameters, stab_local); locals->space = defspace_new (ds_virtual); fsym->func->locals = locals; if (options.code.progsversion == PROG_VERSION) { build_rua_scope (fsym); } else { build_v6p_scope (fsym); } } function_t * new_function (const char *name, const char *nice_name) { function_t *f; ALLOC (1024, function_t, functions, f); f->s_name = ReuseString (name); f->s_file = pr.loc.file; if (!(f->name = nice_name)) f->name = name; return f; } void make_function (symbol_t *sym, const char *nice_name, defspace_t *space, storage_class_t storage) { reloc_t *relocs = 0; if (sym->sy_type != sy_func) internal_error (0, "%s is not a function", sym->name); if (storage == sc_extern && sym->func) return; if (!sym->func) { sym->func = new_function (sym->name, nice_name); sym->func->sym = sym; sym->func->type = unalias_type (sym->type); } if (sym->func->def && sym->func->def->external && storage != sc_extern) { //FIXME this really is not the right way relocs = sym->func->def->relocs; free_def (sym->func->def); sym->func->def = 0; } if (!sym->func->def) { sym->func->def = new_def (sym->name, sym->type, space, storage); reloc_attach_relocs (relocs, &sym->func->def->relocs); } } void add_function (function_t *f) { *pr.func_tail = f; pr.func_tail = &f->next; f->function_num = pr.num_functions++; } function_t * begin_function (symbol_t *sym, const char *nicename, symtab_t *parent, int far, storage_class_t storage) { defspace_t *space; if (sym->sy_type != sy_func) { error (0, "%s is not a function", sym->name); sym = new_symbol_type (sym->name, &type_func); sym = function_symbol (sym, (specifier_t) { .is_overload = true }); } if (sym->func && sym->func->def && sym->func->def->initialized) { error (0, "%s redefined", sym->name); sym = new_symbol_type (sym->name, sym->type); sym = function_symbol (sym, (specifier_t) { .is_overload = true }); } space = sym->table->space; if (far) space = pr.far_data; make_function (sym, nicename, space, storage); if (!sym->func->def->external) { sym->func->def->initialized = 1; sym->func->def->constant = 1; sym->func->def->nosave = 1; add_function (sym->func); reloc_def_func (sym->func, sym->func->def); sym->func->def->loc = pr.loc; } sym->func->code = pr.code->size; sym->func->s_file = pr.loc.file; if (options.code.debug) { pr_lineno_t *lineno = new_lineno (); sym->func->line_info = lineno - pr.linenos; } build_scope (sym, parent); return sym->func; } static void build_function (symbol_t *fsym) { const type_t *func_type = fsym->func->type; if (func_type->func.num_params > PR_MAX_PARAMS) { error (0, "too many params"); } } static void merge_spaces (defspace_t *dst, defspace_t *src, int alignment) { int offset; for (def_t *def = src->defs; def; def = def->next) { if (def->type->alignment > alignment) { alignment = def->type->alignment; } } offset = defspace_alloc_aligned_highwater (dst, src->size, alignment); for (def_t *def = src->defs; def; def = def->next) { def->offset += offset; def->space = dst; } if (src->defs) { *dst->def_tail = src->defs; dst->def_tail = src->def_tail; src->def_tail = &src->defs; *src->def_tail = 0; } defspace_delete (src); } function_t * build_code_function (symbol_t *fsym, const expr_t *state_expr, expr_t *statements) { if (fsym->sy_type != sy_func) // probably in error recovery return 0; build_function (fsym); if (state_expr) { prepend_expr (statements, state_expr); } function_t *func = fsym->func; if (options.code.progsversion == PROG_VERSION) { /* Create a function entry block to set up the stack frame and add the * actual function code to that block. This ensure that the adjstk and * with statements always come first, regardless of what ideas the * optimizer gets. */ expr_t *e; expr_t *entry = new_block_expr (0); entry->loc = func->def->loc; e = new_adjstk_expr (0, 0); e->loc = entry->loc; append_expr (entry, e); e = new_with_expr (2, LOCALS_REG, new_short_expr (0)); e->loc = entry->loc; append_expr (entry, e); append_expr (entry, statements); statements = entry; /* Mark all local defs as using the base register used for stack * references. */ func->temp_reg = LOCALS_REG; for (def_t *def = func->locals->space->defs; def; def = def->next) { if (def->local || def->param) { def->reg = LOCALS_REG; } } for (def_t *def = func->parameters->space->defs; def; def = def->next) { if (def->local || def->param) { def->reg = LOCALS_REG; } } } emit_function (func, statements); defspace_sort_defs (func->parameters->space); defspace_sort_defs (func->locals->space); if (options.code.progsversion < PROG_VERSION) { // stitch parameter and locals data together with parameters coming // first defspace_t *space = defspace_new (ds_virtual); func->params_start = 0; merge_spaces (space, func->parameters->space, 1); func->parameters->space = space; merge_spaces (space, func->locals->space, 1); func->locals->space = space; } else { defspace_t *space = defspace_new (ds_virtual); if (func->arguments) { func->arguments->size = func->arguments->max_size; merge_spaces (space, func->arguments, STACK_ALIGN); func->arguments = 0; } merge_spaces (space, func->locals->space, STACK_ALIGN); func->locals->space = space; // allocate 0 words to force alignment and get the address func->params_start = defspace_alloc_aligned_highwater (space, 0, STACK_ALIGN); dstatement_t *st = &pr.code->code[func->code]; if (pr.code->size > func->code && st->op == OP_ADJSTK) { if (func->params_start) { st->b = -func->params_start; } else { // skip over adjstk so a zero adjustment doesn't get executed func->code += 1; } } merge_spaces (space, func->parameters->space, STACK_ALIGN); func->parameters->space = space; // force the alignment again so the full stack slot is counted when // the final parameter is smaller than STACK_ALIGN words defspace_alloc_aligned_highwater (space, 0, STACK_ALIGN); } return fsym->func; } function_t * build_builtin_function (symbol_t *sym, const expr_t *bi_val, int far, storage_class_t storage) { int bi; defspace_t *space; if (sym->sy_type != sy_func) { error (bi_val, "%s is not a function", sym->name); return 0; } if (sym->func && sym->func->def && sym->func->def->initialized) { error (bi_val, "%s redefined", sym->name); return 0; } if (!is_int_val (bi_val) && !is_float_val (bi_val)) { error (bi_val, "invalid constant for = #"); return 0; } space = sym->table->space; if (far) space = pr.far_data; make_function (sym, 0, space, storage); if (sym->func->def->external) return 0; sym->func->def->initialized = 1; sym->func->def->constant = 1; sym->func->def->nosave = 1; add_function (sym->func); if (is_int_val (bi_val)) bi = expr_int (bi_val); else bi = expr_float (bi_val); if (bi < 0) { error (bi_val, "builtin functions must be positive or 0"); return 0; } sym->func->builtin = bi; reloc_def_func (sym->func, sym->func->def); build_function (sym); // for debug info build_scope (sym, current_symtab); sym->func->parameters->space->size = 0; sym->func->locals->space = sym->func->parameters->space; return sym->func; } void emit_function (function_t *f, expr_t *e) { if (pr.error_count) return; f->code = pr.code->size; lineno_base = f->def->loc.line; f->sblock = make_statements (e); if (options.code.optimize) { flow_data_flow (f); } else { statements_count_temps (f->sblock); } emit_statements (f->sblock); } int function_parms (function_t *f, byte *parm_size) { int count, i; auto func = &f->sym->type->func; if (func->num_params >= 0) count = func->num_params; else count = -func->num_params - 1; for (i = 0; i < count; i++) parm_size[i] = type_size (func->param_types[i]); return func->num_params; } void clear_functions (void) { if (overloaded_functions) { Hash_FlushTable (generic_functions); Hash_FlushTable (overloaded_functions); Hash_FlushTable (function_map); } else { generic_functions = Hash_NewTable (1021, gen_func_get_key, 0, 0, 0); overloaded_functions = Hash_NewTable (1021, ol_func_get_key, 0, 0, 0); function_map = Hash_NewTable (1021, func_map_get_key, 0, 0, 0); } }