The parameter defs are allocated from the parameter space using a
minimum alignment of 4, and varargs functions get a va_list struct in
place of the ...
An "args" expression is unconditionally injected into the call arguments
list at the place where ... is in the list, with arguments passed
through ... coming after the ...
Arguments get through to functions now, but there's problems with taking
the address of local variables: currently done using constant pointer
defs, which can't work for the base register addressing used in Ruamoko
progs.
With the update to test-bi's printf (and a hack to qfcc for lea),
triangle.r actually works, printing the expected results (but -1 instead
of 1 for equality, though that too is actually expected). qfcc will take
a bit longer because it seems there are some design issues in address
expressions (ambiguity, and a few other things) that have pretty much
always been there.
The aux use ops need to be counted and given nodes explicitly as they
may refer to defs that are not accessed by other statements other than
by aliases, and those aliases need to be marked live as well as the used
def.
PR_SetupParams is new and sets up the parameter pointers so older code
that expects only up to 8 parameter will work with both v6p and Ruamoko
progs without having to check what progs are running. PR_SetupParams is
useful even when Ruamoko progs are expected as it reserves the required
space (respecting alignment) on the stack and returns a pointer to the
top (bottom? confusing) of the stack. PR_PushFrame and PR_PopFrame
need to be used around PR_SetupParams, regardless of using temp strings,
to avoid a stack leak (need to do an audit).
This is part of the work for #26 (Record resource pointer with builtin
function data). Currently, the data pointer gets as far as the
per-instance VM function table (I don't feel like tackling the job of
converting all the builtin functions tonight). All the builtin modules
that register a resources data block pass that block on to
PR_RegisterBuiltins.
The builtin and progs function data is overlaid so the extra data
doesn't cause too much memory to be used (it's actually 8 bytes smaller
now). The plan is to pre-compute the offsets based on the parameter
size and alignment data.
This will make it possible for the engine to set up their parameter
pointers when running Ruamoko progs. At this stage, it doesn't matter
*too* much, except for varargs functions, because no builtin yet takes
anything larger than a float quaternion, but it will be critical when
double or long vec3 and vec4 values are passed.
Just 32-bit rounding to next higher power of two, and base 2 logarithm.
Most importantly, they are suitable for use in initializers as they are
constant in, constant out.
Update qdb_get_string's mangling for qfcc's new unsigned int support and
fix an incorrect cast of the param pointer passed by prd_runerror that
caused a segfault when trying to use the string. Attempting to use
qwaq-app (ie, the qc debugger) on Ruamoko ISA progs mostly works, but
the defs are decidedly unhappy (due to the base registers).
Storing a variable into a dereference pointer (*p = x) is not marking
the variable as used (due to a mistake while converting to Ruamoko
statement format) resulting in assignments to that variable being
dropped due to it being a dead assignment as the assignment to the
variable and the storing need to be in separate basic blocks (thus the
call in the test, though an if would have worked, I think) for the bug
to trigger.
The problem was a missed change when switching the internal statement
format to Ruamoko: I "used" the statement's operands directly rather
than the rotated ones when emitting v6p progs. Fixes a compile segfault
when NOT optimizing.
As even the simplest v6p functions that take parameters but have no
local or temporary variables still have locals for the local copy of the
parameters, this is a both a good check for for the Ruamoko ISA as its
functions never have locals (everything's on the progs data stack), and
an optimization for v6p functions that have no params or locals (simple
getters (very rare?), most .ctor, etc).
nq was just a bit of whitespace, but qw had an actual bug where the
parameters were not being reset before writing to them. It really
doesn't help that I don't know where to get progs suitable for testing
(really don't what to have to write my own).
There was an out-by-one where attempting to run a program with only one
argument would result in the argument not being passed to the program
(two worked). This is actually the source of the error fixed in
9347e4f901 because test-harness.c was the
basis for qwaq's main.c
I found the docs in PR_ExecuteProgram and PR_CallFunction to be a little
confusing, so making it explicit that PR_ExecuteProgram calls
PR_CallFunction and that PR_CallFunction should be called only in a
builtin seemed like a good idea.
And fix an incorrect definition for RETURN_QUAT.
Prefixed MAX_STACK_DEPTH and LOCALSTACK_SIZE (and LOCALSTACK_SIZE got an
extra _).
The rest is just edits to documentation comments.
While all base registers can be used for any purpose at any time (this
is why the with instruction has hard-absolute modes: you can never get
permanently lost), qfcc currently uses the convention of register 0 for
globals and register 1 for stack locals (params, locals, function args).
The register used to access a def is stored in the def and that is used
to set the register bits in the instruction opcode.
The def code actually doesn't know anything about any conventions: it
assumes all defs are global for non-temp defs (the function code updates
the defs before emitting code) and the current function provides the
register to use for any temp defs allocated while emitting code.
Seems to work well, but debug is utterly messed up (not surprised, that
will be tricky).
Still need to get the base register index into the instructions, but I
think this is it for basic code generation. I should be able to start
testing Ruamoko properly fairly soon :)
ldconst isn't implemented yet but the plan is to load various constants
(eg, 0, 1, 2, pi, e, ...).
Stack adjust is useful for adding an offset to the stack pointer without
having to worry about finding it (and it checks for alignment).
nop is just that :)
Thanks to the use/def/kill lists attached to statements for pseudo-ops,
it turned out to be a lot easier to implement flow analysis (and thus
dags processing) than I expected. I suspect I should go back and make
the old call code use them too, and probably several other places, as
that will greatly simplify the edge setting.
The means that the actual call expression is not in the statement lint
of the enclosing block expression, but just its result, whether the call
is void or not. This actually simplifies several things, but most
importantly will make Ruamoko calls easier to implement.
The test is because I had some trouble with double-calls, and is how I
found the return-postop issue :P
Commit 76b3bedb72 broke more than just the
swap test, but at least I know I need to get an edge in the dag.
Currently, the following code is generated: return and add are reversed.
../tools/qfcc/test/return-postop.r:8: return counter++;
0001 store.i counter, .tmp0
0002 return .tmp0
0003 add.i .tmp0, (1), counter
However, I don't want to deal with it right now, so it's marked XFAIL.
Since Ruamoko now uses the stack for parameters and locals, parameters
need to come after locals in the address space (instead of before, as in
v6 progs). Thus use separate spaces for parameters and locals regardless
of the target, then stitch them together appropriately for the target.
The third space is used for allocating stack space for arguments to
called functions. It us not used for v6 progs, and comes before locals
in Ruamoko progs.
Other than the return value, and optimization (ice, not implemented)
calls in Ruamoko look like they'll work.
Thanks to me having done something right 20 years ago, that was pretty
easy :). The two boolean types aren't supported yet because I haven't
decided on just how to represent their types in qfcc.
Due to how OP_RETURN works, a destination is required for any function
returning data, but the caller may not have allocated any space for the
value. Thus the VM maintains a buffer into which the data can be put and
ignored. It also makes a good place for return values when the engine
calls Ruamoko code as trusting progs code with return sizes seems like a
recipe for disaster, especially if the return location is on the C
stack.
Terminal apps effectively always have focus (unless I find a way to know
when an xterm loses/gains focus). Fixes input-app not updating on evdev
events.
Terminal apps effectively always have focus (unless I find a way to know
when an xterm loses/gains focus). Fixes input-app not updating on evdev
events.
This seems to be the most reasonable approach to allocating space for
function call parameters without using push and pop (or adding to the
stack pointer), though it's probably good even when using push and pop
to help keep things aligned.
My little test program now builds with the Ruamoko ISA :)
void cp (int *dst, int *src, int count)
{
while (count--) {
*dst++ = *src++;
}
}
Calls are broken (unimplemented), and non-void returns are not likely to
work either (only partially implemented).
Operand width is encoded in the instruction opcode, so the width needs
to be accounted for in order to select the correct instruction. With
this, my little test generates correct code for the ruamoko ISA (except
for return, still fails).