This did involve changing some field names and a little bit of cleanup,
but I've got a better handle on what's going on (I think I was in one of
those coding trances where I quickly forget how things work).
This makes bsp traversal even more re-entrant (needed for shadows).
Everything needed for a "pass" is taken from bsp_pass_t (or indirectly
through bspctx_t (though that too might need some revising)).
Surfaces marked with SURF_DRAWALPHA but not SURF_DRAWTURB are put in a
separate queue for the water shader and run with a turb scale of 0.
Also, entities with colormod alpha < 1 are marked to go in the same
queue as SURF_DRAWALPHA surfaces (ie, no SURF_DRAWTURB unless the
model's texture indicated such).
The texture animation data is compacted into a small struct for each
texture, resulting in much less data access when animating the texture.
More importantly, no looping over the list of frames. I plan on
migrating this to at least the other hardware renderers.
The models are broken up into N sub-(sub-)models, one for each texture,
but all faces using the same texture are drawn as an instance, making
for both reduced draw calls and reduced index buffer use (and thus,
hopefully, reduced bandwidth). While texture animations are broken, this
does mark a significant milestone towards implementing shadows as it
should now be possible to use multiple threads (with multiple index and
entid buffers) to render the depth buffers for all the lights.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
Sub-models and instance models need an instance data buffer, but this
gets the basics working (and the proof of concept). Using arrays like
this actually simplified a lot of the code, and will make it easy to get
transparency without turbulence (just another queue).
This was one of the biggest reasons I had trouble understanding the bsp
display list code, but it turns out it was for dealing with GLES's
16-bit limit on vertex indices. Since vulkan uses 32-bit indices,
there's no need for the extra layer of indirection. I'm pretty sure it
was that lack of understanding that prevented me from removing it when I
first converted the glsl bsp code to vulkan (ie, that 16-bit indices
were the only reason for elements_t).
It's hard to tell whether the change makes much difference to
performance, though it seems it might (noisy stats even over 50 timedemo
loops) and the better data localization indicate it should at least be
just as good if not better. However, the reason for the change is
simplifying the data structures so I can make bsp rendering thread-safe
in preparation for rendering shadow maps.
Regardless of whether the sky is spinning or not, the matrix needs to be
updated with the current origin in order to get the direction vector
right in the shader. Also, it's in the update that the required x-y
plane rotation gets in so the skies move in the correct direction.
I guess it's not quite bindless as the texture index is a push constant,
but it seems to work well (and I may have fixed some full-bright issues
by accident, though I suspect that's just my imagination, but they do
look good).
BSP textures are now two-layered with the albedo and emission in the two
layers rather than two separate images. While this does increase memory
usage for the textures themselves (most do not have fullbright pixels),
it cuts down on image and image view handles (and shader resources).
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
Since vulkan supports 32-bit indexes, there's no need for the
shenanigans the EGL-based glsl renderer had to go through to render bsp
models (maps often had quite a bit more than 65536 vertices), though the
reduced GPU memory requirements of 16-bit indices does have its
advantages.
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
Loading is broken for multi-file image sets due to the way images are
loaded (this needs some thought for making it effecient), but the
Blender environment map loading works.
They're unlit (fullbright, but that's nothing new for quake), but
working nicely. As a bonus, sort out the sky pass (forced to due to the
way command buffers are used).
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
The sky texture is loaded with black's alpha set to 0. While this does
hit both layers, the screen is cleared to black so it shouldn't be a
problem (and will allow having a skybox behind the sheets).
Glow map and sky sheet and cube need to wait until I can get some
default textures going, but the world is rendering correctly otherwise
(though a tad dark: need to do a gamma setting).