It is capable of parsing single expressions with fairly simple
operations. It current supports ints, enums, cvars and (external) data
structs. It is also thread-safe (in theory, needs proper testing) and
the memory it uses can be mass-freed.
This was inspired by
Hoard: A Scalable Memory Allocator
for Multithreaded Applications
Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, Paul R.
Wilson,
It's not anywhere near the same implementation, but it did take a few
basic concepts. The idea is twofold:
1) A pool of memory from which blocks can be allocated and then freed
en-mass and is fairly efficient for small (4-16 byte) blocks
2) Tread safety for use with the Vulkan renderer (and any other
multi-threaded tasks).
However, based on the Hoard paper, small allocations are cache-line
aligned. On top of that, larger allocations are page aligned.
I suspect it would help qfvis somewhat if I ever get around to tweaking
qfvis to use cmem.
The calculation fails (produces NaN) if the vectors are anti-parallel,
but works for all other combinations. I came up with this implementation
when I discovered Unity's Quaternion.FromToRotation could did not work
with very small angles. This implementation will produce a usable
quaternion below 0.00255 degrees (though it will be slightly larger than
unit). Unity's failed such that I could see KSP's skybox snap while it
rotated around my test vessel.
The problem was caused by passing the index into the dtables array to
dtable_get which expects a handle. A handle is the ones-compliment
negative of the index which means that handle 0 is invalid (but 0 was
being passed... oops). Fixes the segfault when qw-client-x11 connects to
a server.
This gets renderpass parsing almost working (not hooked up, though). The
missing bits are support for expressions for flags (namely support for
the | operator) and references (eg $swapchain.format). However, this
shows that the basic concept for the parser is working.
The array has to be allocated using byte elements and thus the size of
the array is the number of bytes, but it needs to be the actual number
of elements in the array. Problem caused by not knowing the actual type
(and C not having type variables anyway).
Nothing is actually done yet other than parsing the built-in property
list to property list items (the actual parser is just a skeleton), but
everything compiles
The property list specifies the base structures for which parser code
will be generated (along with any structures and enums upon which those
structures depend). It also defines option specialized parsers for
better control.
I can't say that I like what's there even now, but at least PLItem can
be used without a lot of casting. Really, Ruamoko needs dictionary and
string classes so reading a property list can build more natural object
trees rather than this mess from when I knew too little.
I think I wasn't sure at the time whether the simple variable was
required for pthread_cond_wait (and friends) to work properly, but it
is: the time between the target posting the debug event and the target
waiting on the condition variable turns out to sometimes be enough for
the debugger to handle the event and signal the target to continue,
resulting in the target waiting on a signal that will never come because
another debug event will not be sent by the target until AFTER it has
exited from the debug handler.
Pressing F8 (or n) while the debug target was running would cause it to
stop at that point. While it's certainly desirable to stop a runaway
target on demand, that should be with a different input. Now, commands
that start the target running are ignored while the target is running.
No commands for when the target is running have been implemented yet,
but the provision is there.
It worked as a proof of concept, but as the code itself needs to be a
bit smarter, it would be a lot smarter to break up that code to make it
easier to work on the individual parts.
PL_ParseDictionary itself does only one level, but it takes care of the
key-field mappings and property list item type checking leaving the
actual parsing to a helper specified by the field. That helper is free
to call PL_ParseDictionary recursively.
The first line of the parsed item is stored and can be retrieved using
PL_Line. Line numbers not stored for dictionary keys yet. Will be 0 for
any items generated by code rather than parsed from a file or string.
The tables are generated from the enums pulled out of the vulkan headers
using a ruamoko program (thanks to its reflection capabilities). They
will be used for parsing property lists used to create render passes and
pipelines.
When a global variable is accessed via only an alias in a function the
actual def's flowvar would remain in the state it was from the last
function that accessed the global normally. This would result in invalid
flowvar accesses which can be difficult to reproduce (thus no test
case).
Same issue as for the menus. But now I know why PR_LoadProgsFile is used
instead of PR_LoadProgs (at least for qwaq): avoidance of the gamedir
restriction (however, the menus are supposed to be restricted).
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
This fixes the segfault when loading the menu progs. I had forgotten
that the menu code doesn't use PR_LoadProgs (I don't remember why.
Obsolete reason?).
When I ported SEB to python, I discovered that I apparently didn't
really understand the paper's description of the end condition and the
usage of the affine and convex sets for center testing. This cleans up
the test and makes SEB more correct for the cases that have less than 4
supporting points (especially when there are less than 4 points total).