gcc didn't like a couple of the changes (rightly so: one was actually
incorrect), and the fix for qfcc I didn't think to suggest while working
with Emily.
The general CFLAGS etc fixes mostly required just getting the order of
operations right: check for attributes after setting the warnings flags,
though those needed some care for gcc as it began warning about main
wanting the const attribute.
Fixing the imui link errors required moving the ui functions and setup
to vulkan_lighting.c, which is really the only place they're used.
Fixing a load of issues related to autoconf and some small source-level issues to re-add clang support.
autoconf feature detection probably needs some addressing - partially as -Werror is applied late.
The use of a static set makes Mod_LeafPVS not thread safe and also means
that the set is not usable with the set iterators after going to a
smaller map from a larger map.
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
This fixes a Sys_Error when loading the level for the first demo (and
probably many other times). It was mod_numknown getting set to 0 that
triggered the issue, but that seems to be necessary for the other
renderers. I think the whole model loading and caching system needs an
overhaul as this doesn't feel quite right due to removing part of the
advantage of caching the model data.
I don't remember why I kept the abbreviated configs for images and image
views, but it because such that I need to be able to specify them
completely. In addition, image views support external images.
The rest was just cleaning up after the changes to qfv_resobj_t.
This cuts down on the memory requirements for skins by 25%, and
simplifies the shader a bit more, too. While at it, I made alias skins
nominally compatible with bsp textures: layer 0 is color, 1 is emissive,
and 2 is the color map (emissive was on 3).
As the RGB curves for many of the color rows are not linearly related,
my idea of scaling the brightest color in the row just didn't work.
Using a masked palette lookup works much better as it allows any curves.
Also, because the palette is uploaded as a grid and the coordinates are
calculated on the CPU, the system is extendable beyond 8-bit palettes.
This isn't quite complete as the top and bottom colors are still in
separate layers but their indices and masks can fit in just one, but
this requires reworking the texture setup (for another commit).
This moves the qfv_resobj_t image initialization code from the IQM
loader into the resource management code. This will allow me to reuse
the code for setting up glyph data. As a bonus, it cleans up the IQM
code nicely.
Textures whose names start with a { are meant to be rendered with
transparency. Surfaces using those textures are marked with
SURF_DRAWALPHA.
Unfortunately, the mip levels of ad_tears' transparent textures use the
wrong color so only the highest LOD works properly, but those textures
are meant to be loaded from external files anyway, it seems.
Most were pretty easy and fairly logical, but gib's regex was a bit of a
pain until I figured out the real problem was the conditional
assignments.
However, libs/gamecode/test/test-conv4 fails when optimizing due to gcc
using vcvttps2dq (which is nice, actually) for vector forms, but not the
single equivalent other times. I haven't decided what to do with the
test (I might abandon it as it does seem to be UD).
I had been trimming for the solid leaf, but not the empty leafs. I had
assumed the vis tool would trim the bits, but it seems to not be
reliable (though it could be a bug in qfvis, I think the map in question
is one of my test maps).
Sub-models and instance models need an instance data buffer, but this
gets the basics working (and the proof of concept). Using arrays like
this actually simplified a lot of the code, and will make it easy to get
transparency without turbulence (just another queue).
The gl water warp ones have been useless since very early on due to not
doing water warp in gl (vertex warping just didn't work well), and the
recent water warp implementation doesn't need those hacks. The rest of
the removed flags just aren't needed for anything. SURF_DRAWNOALPHA
might get renamed, but should be useful for translucent bsp surfaces
(eg, vines in ad_tears).
The main goal was to get visframe out of mnode_t to make it thread-safe
(each thread can have its own visframe array), but moving the plane info
into mnode_t made for better data access patters when traversing the bsp
tree as the plane is right there with the child indices. Nicely, the
size of mnode_t is the same as before (64 bytes due to alignment), with
4 bytes wasted.
Performance-wise, there seems to be very little difference. Maybe
slightly slower.
The unfortunate thing about the change is the plane distance is negated,
possibly leading to some confusion, particularly since the box and
sphere culling functions were affected. However, this is so point-plane
distance calculations can be done with a single 4d dot product.
It was added only because FitzQuake used it in its pre-bsp2 large-map
support. That support has been hidden in bspfile.c for some time now.
This doesn't gain much other than having one less type to worry about.
Well tested on Conflagrant Rodent (the map that caused the need for
mclipnode_t in the first place).
Although the skin pointer was being advanced after recording the
information in for the batch array, it was being reset the next time
around the loop (due to a mistranslation of the previous code). This
fixes the segfault while loading (gl, glsl, vulkan) or rendering (sw)
the sphere model from Rogue.
While gcc was quite correct in its warning, all I needed was to
explicitly truncate the string. I don't remember why I didn't do that
back when I made the changes in 4f58429137, but it works now, and the
surrounding code does expect the string to be no more than 15 chars
long. This fixes yet another memory leak (but timedemo over multiple
runs still leaks like a sieve).
While it takes one extra step to grab the marksurface pointer,
R_MarkLeaves and R_MarkLights (the two actual users) seem to be either
the same speed or fractionally faster (by a few microseconds). I imagine
the loss gone to the extra fetch is made up for by better bandwidth
while traversing the leafs array (mleaf_t now fits in a single cache
line, so leafs are cache-aligned since hunk allocations are aligned).
The bones aren't animated yet (and I realized I made the mistake of
thinking the bone buffer was per-model when it's really per-instance (I
think this mistake is in the rest of QF, too)), skin rendering is a
mess, need to default vertex attributes that aren't in the model...
Still, it's quite satisfying seeing Mr Fixit on screen again :)
I wound up moving the pipeline spec in with the rest of the pipelines as
the system isn't really ready for separating them.
The model system is rather clunky as it is focused around caching, so
unloading is more of a suggestion than anything, but it was good enough
for testing loading and unloading of IQM models in Vulkan.
Despite the base IQM specification not supporting blend-shapes, I think
IQM will become the basis for QF's generic model representation (at
least for the more advanced renderers). After my experience with .mu
models (KSP) and unity mesh objects (both normal and skinned), and
reviewing the IQM spec, it looks like with the addition of support for
blend-shapes, IQM is actually pretty good.
This is just the preliminary work to get standard IQM models loading in
vulkan (seems to work, along with unloading), and they very basics into
the renderer (most likely not working: not tested yet). The rest of the
renderer seems to be unaffected, though, which is good.
Vulkan doesn't appreciate the empty buffers that result from the model
not having any textures or surfaces that can be rendered (rightfully so,
for such a bare-metal api).
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
The improved allocation overheads have been implemented for gl and sw,
and glsl no longer uses malloc. Using array textures will have to wait
as the current texture loading code doesn't support them.
Really, this won't make all that much difference because alias models
with more than one skin are quite rare, and those with animated skin
groups are even rarer. However, for those models that do have more than
one skin, it will allow for reduced allocation overheads, and when
supported (glsl, vulkan, maybe gl), loading all the skins into an array
texture (since all skins are the same size, though external skins may
vary), but that's not implemented yet, this just wraps the old one skin
at a time code.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
While the scheme of using our own allocated did work just fine, fisheye
rendering uses glGenTextures which caused a texture id clash and thus
invalid operations (the cube map texture happened to be the same as the
console background texture). Sure, I could have just "fixed" the fisheye
init code, but this brings gl closer in line with glsl (which makes
extensive use of glGenTextures and glDeleteTextures). This doesn't fix
any texture leaks gl has (plenty, I imagine), but it's a step in the
right direction.
And add a unary op macro. Having VectorCompOp makes it easy to write
macros that work for multiple data widths, which is why it and its users
now use (dst, ...) instead of (..., dst) as in the past. I'll sort out
the other macros later now that I know the compiler handily gives
messages about the switched order (uninitialized vars etc).
It turned out the bindless approach wouldn't work too well for my design
of the sprite objects, but I don't think that's a big issue at this
stage (and it seems bindless is causing problems for brush/alias
rendering via renderdoc and on my versa pro). However, I have figured
out how to make effective use of descriptor sets (finally :P).
The actual normal still needs checking, but the sprites are currently
unlit so not an issue at this stage.
I'm not at all sure what I was thinking when I designed it, but I
certainly designed it wrong (to the point of being fairly useless). It
turns out memory requirements are already aligned in size (so just
multiplying is fine), and what I really wanted was to get the next
offset aligned to the given requirements.
The vertices and frame images are loaded into the one memory object,
with the vertices first followed by the images.
The vertices are 2D xy+uv sets meant to be applied to the model
transform frame, and are pre-computed for the sprite size (this part
does support sprites with varying frame image sizes).
The frame images are loaded into one image with each frame on its own
layer. This will cause some problems if any sprites with varying frame
image sizes are found, but the three sprites in quake are all uniform
size.