Smashing everything in the process :P (need to work on the C side).
However, while bindless is supposedly good for performance, the biggest
gain this will bring is portability: the texture counts are
automatically limited to what the hardware can handle, and the reliance
on push descriptors is removed (though they were nice and did help get
things up and running).
I had forgotten that the parameters are in reverse order, and even if I
had remembered, I forgot to reset offset before the second loop.
Pre-decrementing offset takes care of both issues at once.
My VersaPro doesn't support more than 32 per-stage samplers (lavapipe).
This is a small part of getting Vulkan to run on lavapipe and even in
itself is rather incomplete.
This allows using references in expressions, eg:
$frames.size * size_t($properties.limits.maxSamplers)
As references remain property list items until actually evaluated.
Fixes the warning about parse_fixed_array not being used (oops, the
problem with partial commits), but more importantly, gives access to
things like maxDescriptorSetSamplers.
This will make property list expressions easier to work with. The
library is rather limited right now (trig, dot, min/max/bound) but even
just min adds a lot of functionality.
For now, just dot product, trig, and min/max/bound, but it works well as
a proof of concept. The main goal was actually min. Only the list of
symbols is provided, it is the user's responsibility to set up the
symbol table and context.
cexpr's symbol tables currently aren't readily extended, and dynamic
scoping is usually a good thing anyway. The chain of contexts is walked
when a symbol is not found in the current context's symtab, but minor
efforts are made to avoid checking the same symtab twice (usually cased
by cloning a context but not updating the symtab).
I want to support reading VkPhysicalDeviceLimits but it has some arrays.
While I don't need to parse them (VkPhysicalDeviceLimits should be
treated as read-only), I do need to be able to access them in property
list expressions, and vkgen generates the cexpr type descriptors too.
However, I will probably want to parse arrays some time in the future.
This ensures that unused parser blocks do not get emitted. In the
testing of the upcoming support for fixed arrays, the blend color
constants were being double emitted (both as custom and normal parser)
due to being an array. gcc did not like that (what with all those
warning flags).
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
This is actually a better solution to the renderer directly accessing
client code than provided by 7e078c7f9c.
Essentially, V_RenderView should not have been calling R_RenderView, and
CL_UpdateScreen should have been calling V_RenderView directly. The
issue was that the renderers expected the world entity model to be valid
at all times. Now, R_RenderView checks the world entity model's validity
and immediately bails if it is not, and R_ClearState (which is called
whenever the client disconnects and thus no longer has a world to
render) clears the world entity model. Thus R_RenderView can (and is)
now called unconditionally from within the renderer, simplifying
renderer-specific variants.
The generated short names for a lot of Vulkan enums start with a number
(eg VK_IMAGE_TYPE_2D -> 2d). Having to prefix the short name with ` is a
tiny cost for the convenience.
While using binary data objects for specialization data works for bools
(as they can be 0 or -1), they don't work so well for numeric values due
to having to get the byte order correct and thus are not portable, and
difficult to get right.
Binary data is still supported, but the data can be written as a string
with an array(...) "constructor" expression taking any number of
parameters, with each parameter itself being an expression (though
values are limited at this stage).
Due to the plist format, quotes are required around the expression
("array(...)")
While there may be better solutions, I needed a varargs function for
building Vulkan specialization data. Like progs functions, negative
parameter counts indicate ellipsis with the number of fixed parameters
being equal to -param_count - 1.
Sets never shrink, so assigning a dynamically created set to a
statically created set after the working size has reduced (going from
demo2 to demo3) causes the set code to attempt to resize the statically
created set, which leads to libc having a bad time.
Why nvidia's drivers accepted double-destroyed framebuffers is beyond
me, but this fixes the Intel drivers complaining about such (and the
subsequent segfault).
When I changed the matrices from an array of floats to an array of
vec4f_t, I forgot to update the flush offsets. Yay for having a
Vulkan-capable Intel device with its different alignment requirements.
When allocating memory for multiple objects that have alignment
requirements, it gets tedious keeping track of the offset and the
alignment. This is a simple function for walking the offset respecting
size and alignment requirements, and doubles as a size calculator.
IN_ButtonAction treats id 0 as not pressed in its internal processing,
and the previous input implementation treated 0 as "no key", so this is
both the simplest and most correct fix.
Fixes mouse left button not working every second time the game is run
(due to keyboard and mouse bindings swapping places in the config file
(separate issue, if it really is one)).
I'm not sure what I was thinking when I made PL_RemoveObjectForKey take
a const plitem. One of those times where C could do with being a little
more strict.
I think this bug has been haunting us since we introduced lerping. I do
remember chasing bad pose indices 20 years ago and never finding the
cause. I guess we never thought to check the view model.
I don't know if cygwin itself is even relevant these days, but any of
our docs for it are way out of date anyway. Also, as github takes any
old readme as the repository documentation, it's not the best candidate.
While using barriers is a zillion times better than actually grabbing
the mouse and keyboard, they're still a pain when debugging as qf is not
able to respond to the barrier-hit events. All the other logic is still
there so even when "grabbing", the mouse will not be blocked if the
window doesn't have focus.
The stack is arbitrary strings that the validation layer debug callback
prints in reverse order after each message. This makes it easy to work
out what nodes in a pipeline/render pass plist are causing validation
errors. Still have to narrow down the actual line, but the messages seem
to help with that.
Putting qfvPushDebug/qfvPopDebug around other calls to vulkan should
help out a lot, tool.
As a bonus, the stack is printed before debug_breakpoint is called, so
it's immediately visible in gdb.
Rather than just 0/1, it now acts as flags to control what messages are
printed. In addition to the Vulkan enum names (long and short), none and
all are supported (as well as raw numbers, but they're not checked for
validity). This makes vulkan_use_validation a bit easier to use and less
verbose by default.
Now, if only it was easier to remember the name :P