While the progs engine itself implements the instructions correctly, the
opcode specs (and thus qfcc) treated the results as 32-bit (which was,
really, a hidden fixme, it seems).
The current code is pretty broken when it comes to vector types (losing
the vector and bogus errors among other issues). The whole thing needs a
rework or even just to be tossed in favor of better DAG processing.
Due to joys of pointers and the like, it's a bit of a bolt-on for now,
but it works nicely for basic math ops which is what I wanted, and the
code is generated from the expression.
Internally, * is not really a valid operator for vectors since it can
have many meanings. This didn't cause trouble until trying to build
everything in game-source (since there's still a lot of legacy code in
there).
While the option to make '*' mean dot product for vectors is important,
it breaks vector scaling in ruamoko progs as the resultant vector op
becomes a dot product instead of the indented hadamard product (ie,
component-wise).
I'd created new_value_expr some time ago, but never used it...
Also, replace convert_* with cast_expr to the appropriate type (removes
a pile of value check and create code).
This code now reaches into one level of the expression tree and
rearranges the nodes to allow the constant folder to do its things, but
only for ints, and only when the folding is trivially correct (* and *,
+/- and +/-). There may be more opportunities, but these cover what I
needed for now and anything more will need code generation or smarter
tree manipulation as things are getting out of hand.
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
This includes calls and unconditional jumps, relative and through a
table. The parameters are all lumped into the one object, with some
being unused by the different types (eg, args and ret_type used only by
call expressions). Just having nice names for the parameters (instead of
e1 and e2) makes it nice, even with all the sub-types lumped together.
No mysterious type aliasing bugs this time ;)
The move operator names are definitely obsolete (due to dropping the
expressions a year or two ago) and the precedence checks seem to be
handled elsewhere. Memset and state expressions went away a while back
too.
While this was a pain to get working, that pain only went to prove the
value of using proper "types" (even if only an enum) for different
expression types: just finding all the places to edit was a chore, and
easy to make mistakes (forgetting bits here and there).
Strangely enough, this exposed a pile of *type* aliasing bugs (next
commit).
And partial implementations in qfcc (most places will generate an
internal error (not implemented) or segfault, but some low-hanging fruit
has already been implemented).
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
All simple type checks are now done using is_* helper functions. This
will help hide the implementation details of the type system from the
rest of the compiler (especially the changes needed for type aliasing).
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.
While this does break automatic type promotion, it does stop
fold_constants recursing through complex expressions: only the top level
expression needs to be folded, and then only if both sides are actually
constant.
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).