The prototypes for handle parsers needed to be changes because it turned
out "single" was inappropriate for handles as "single" allocates memory
for the parsed object, but handles must be written directly.
The way I wound up using the field meant that exprctx should not "own"
the hashlinks chain, but rather just point to it. This fixes the nasty
access errors I had.
Dependencies on vkparse.hinc were spreading through the code which I
didn't want as that removes a lot of the automation from the automake
files. This keeps all parser code internal to vkparse.c's scope, and any
accesses required for enum and struct (not yet) definitions can be
fetched by name.
Array and single type overrides now allow the parsing of the items
themselves to be customized. This makes it easy to handle arrays and
pointers to single items while also using custom specifications, rather
than relying entirely on the custom override.
Block expressions hide ex_error, but get_type() always returns null when
it finds one (which it does by recursing into block expression), so just
check the type itself.
I want to be able to use name references, but that requires string
items, so anything that would normally be dictionary or array (or
binary, even) would also need to accept string. This seemed to be the
cleanest solution. Any custom parser would then need to check the type
and act appropriately, but any inappropriate types have already been
pre-filtered by the standard parsers.
Care needs to be taken to ensure the right function is used with the
right arguments, but with these, the need to use qconj(d|f) for a
one-off inverse rotation is removed.
I forgot to right-shift the value so offsets were becoming 0 or 8
instead of 0-15. This fixes the management of small objects. It turns
out that after this fix, qfvis's problems were caused by fragmentation
in the windings. Need to revisit line allocation and use POT-specialized
pools.
I think the sub-line allocator falling over is the final source of
qfvis's leaks. It certainly causes a mess of the sub-lines. But having
some tests to get working sure beats scratching my head over qfvis :)
They're binned by powers of two (with in between sizes going to the
smaller bin should I make cache-line allocations NPOT (which I think
might be worthwhile). However, there seems to still be a bug somewhere
causing a nasty leak as now my hacked qfvis consumes 40G in less than a
minute.
The idea is to not search through blocks for an available allocation.
While the goal was to speed up allocation of cache lines of varying
cluster sizes, it's not enough due to fragmentation.
They take advantage of gcc's vector_size attribute and so only cross,
dot, qmul, qvmul and qrot (create rotation quaternion from two vectors)
are needed at this stage as basic (per-component) math is supported
natively by gcc.
The provided functions work on horizontal (array-of-structs) data, ie a
vec4d_t or vec4f_t represents a single vector, or traditional vector
layout. Vertical layout (struct-of-arrays) does not need any special
functions as the regular math can be used to operate on four vectors at
a time.
Functions are provided for loading a vec4 from a vec3 (4th element set
to 0) and storing a vec4 into a vec3 (discarding the 4th element).
With this, QF will require AVX2 support (needed for vec4d_t). Without
support for doubles, SSE is possible, but may not be worthwhile for
horizontal data.
Fused-multiply-add is NOT used because it alters the results between
unoptimized and optimized code, resulting in -mfma really meaning
-mfast-math-anyway. I really do not want to have to debug issues that
occur only in optimized code.
QC's int type is named "integer" (didn't feel like changing that right
now), so special case it to be "int".
Output the parse func name (instead of "fix me").
Output a parse func for enums (needed for arrays of enums
(VkDynamicState)).
The static variable meant that Fog_GetColor was not thread-safe (though
multiple calls in the one thread look to be ok for now). However, this
change takes it one step closer to being more generally usable.
Patch found in an old stash.