This fixes the current line object getting corrupted by the tail line
update when the buffer is filled with a single line. There are probably
more tests to write and bugs to fix :)
I was looking through the code for Con_BufferAddText trying to figure
out what it was doing (answer: ring buffer for both text and lines) and
got suspicious about its handling of the line objects. I decided an
automated test was in order. It turns out I was right: filling the
buffer with a single long line causes the tail line to trample the
current line, setting its pointer and length to 0 when the final
character is put in the buffer.
It handles basic cursor motion respecting \r \n \f and \t (might be a
problem for id chars), wraps at the right edge, and automatically
scrolls when the cursor tries to pass the bottom of the screen.
Clearing the buffer resets its cursor to the upper left.
QFS_LoadFile closes its file argument (this is a design error resulting
from changing QFS_LoadFile to take a file instead of a path and not
completing the update), resulting in the call to Qfilesize accessing
freed memory.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
While it does get a bit cluttered currently, being able to see the
contents of structures makes a huge difference. Also highlights that
vector immediates do not get the correct type encodings.
PR_Debug_ValueString prints the value at the given offset using the
provided type to format the string. The formatted string is appended to
the provided dstring.
While it does get a bit cluttered currently, being able to see the
contents of structures makes a huge difference. Also highlights that
vector immediates do not get the correct type encodings.
PR_Debug_ValueString prints the value at the given offset using the
provided type to format the string. The formatted string is appended to
the provided dstring.
This fixes the internal error generated by the likes of
`(sv_gravity * '0 0 1')` where sv_gravity is a float and `'0 0 1'` is an
ivec3: the vector is promoted to vec3 first so that expanding sv_gravity
is expanded to vec3 instead of ivec3 (which is not permitted for a
float: expansion requires the destination base type to be the same as
the source).
For now, anyway, as the generated code looks good. There might be
problems with actual pointer expressions, but it allows entity.field to
work as expected rather than generate an ICE.
This fixes the internal error generated by the likes of
`(sv_gravity * '0 0 1')` where sv_gravity is a float and `'0 0 1'` is an
ivec3: the vector is promoted to vec3 first so that expanding sv_gravity
is expanded to vec3 instead of ivec3 (which is not permitted for a
float: expansion requires the destination base type to be the same as
the source).
For now, anyway, as the generated code looks good. There might be
problems with actual pointer expressions, but it allows entity.field to
work as expected rather than generate an ICE.
For whatever reason, building under MXE (for windows) causes FLAC to try
to use dll import references, but setting FLAC__NO_DLL before including
FLAC/export.h fixes the issue.
For whatever reason, building under MXE (for windows) causes FLAC to try
to use dll import references, but setting FLAC__NO_DLL before including
FLAC/export.h fixes the issue.
While this does pull the grovelling for the subpic out to the callers,
the real problem is the excessive use of qpic_t in the internal code:
qpic_t is really just the image format in wad files, and shouldn't be
used as a generic image handle.
Cleans up more of the icky code in the font drawing functions.
This makes working with quads, implied alpha quads, and lines much
cleaner (and gets rid of the bulk of the "eww" fixme), and will probably
make it easier to support multiple scraps and fonts, and potentially
more flexible ordering between pipelines.
-describe is sent to the object, and the returned string passed back.
There is a worry about the lifetime of the returned string as there's
currently no way of both ensuring it doesn't get freed prematurely and
ensuring it does eventually get freed.
If no handler has been registered, then the corresponding parameter is
printed as a pointer but with surrounding brackets (eg, [0xfc48]). This
will allow the ruamoko runtime to implement object printing.
The resultant unicode is encoded as utf-8, which does conflict with the
quake character map, but right now unicode is useful only with font
text, and those support only standard unicode (currently only as utf-8),
but something will need to be sorted out.
Arrays are passed as a pointer to the first element, so are always valid
parameters. Fixes a bogus "formal parameter N is too large to be passed
by value" error.
-describe is sent to the object, and the returned string passed back.
There is a worry about the lifetime of the returned string as there's
currently no way of both ensuring it doesn't get freed prematurely and
ensuring it does eventually get freed.
If no handler has been registered, then the corresponding parameter is
printed as a pointer but with surrounding brackets (eg, [0xfc48]). This
will allow the ruamoko runtime to implement object printing.
The resultant unicode is encoded as utf-8, which does conflict with the
quake character map, but right now unicode is useful only with font
text, and those support only standard unicode (currently only as utf-8),
but something will need to be sorted out.
This means that QF should support more exotic fonts without any issue
(once the rest of the text handling system is up to snuff) as HarfBuzz
does all the hard work of handling OpenType, Graphite, etc text shaping,
including kerning (when enabled).
Also, font loading now loads all the glyphs into the atlas (preload is
gone).
While the results are a little surprising (tends to alternate between
left side and top for allocations), there is much less wasted space in
the partially allocated regions, and the main free region seems to
always be quite big.
While VRect_Difference worked for subrect allocation, it wasn't ideal as
it tended to produce a lot of long, narrow strips that were difficult to
reuse and thus wasted a lot of the super-rectangle's area. This is
because it always does horizontal splits first. However, rewriting
VRect_Difference didn't seem to be the best option.
VRect_SubRect (the new function) takes only width and height, and splits
the given rectangle such that if there are two off-cuts, they will be
both the minimum and maximum possible area. This does seem to make for
much better utilization of the available area. It's also faster as it
does only the two splits, rather than four.
It is currently an ugly hack for dealing with the separate quad queue,
and the pipeline handling code needs a lot of cleanup, but it works
quite well, though I do plan on moving to HarfBuzz for text shaping. One
nice development is I got updating of descriptor sets working (just need
to ensure the set is no longer in use by the command queue, which the
multiple frames in flight makes easy).
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
R8G8B8A8 was hard-coded by accident when creating Vulkan_LoadTexArray
(or probably even the original Vulkan_LoadTex). This wasn't a problem
while everything was loaded in that format, but attempting to load an R8
texture didn't go so well. The same format as the image itself is used
now (correctly so).
I have recently learned that pre-multiplied alpha is the correct way to
do compositing, which is pretty much what the 2d pass does (actually,
all passes, but...). This required ensuring the color factor passed to
the fragment shader is pre-multiplied (a little silly for cshifts as
they used to be pre-multiplied but were un-pre-multiplied early in QF's
history and I don't feel like fixing that right now as it affects all
renderers), and also pre-multiplying alpha when converting from 8-bit
palette to rgba as the palette entry for transparent has that funky pink
(which is used in full-brights).
I will need to do more work to improve the 2d allocation, but rounding
up the requested sizes to the next power of two proved to be excessively
wasteful: I was able to allocate spots for only half of the sub-pics I
needed (though I did still need to double the number of pixels in the
end).
Arrays are passed as a pointer to the first element, so are always valid
parameters. Fixes a bogus "formal parameter N is too large to be passed
by value" error.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
Due to the mis-initialization of the union used to parse the color
vector, the intensity was incorrectly set to zero and thus the light
dropped, meaning that all lights in ad_tears were lost.
While swizzle does work, it requires the source to be properly aligned
and thus is not really the best choice. The extend instruction has no
alignment requirements (at all) and thus is much better suited to
converting a scalar to a vector type.
Fixes#30
The extend instruction is for loading narrower data types into wider
data types, eg, single element into 2, 3, or 4 element types, with a
small set of extension schemes: 0, 1, -1, copy (for 1->any and 2 -> 4).
Possibly most importantly, it works with unaligned data.
Progress towards #30
It seems clang loses track of the usage of the referenced unions by the
time the code leaves the switch. Due to the misoptimization, "random"
values would get into the vector constants. This puts the usages in the
same blocks as the unions, causing clang to "get it right" (though I
strongly suspect I was running into UB).