Only CaptureBGR is per-renderer as the rest of the screenshot code uses
it to do the actual capture (which is target dependent). Vulkan is
currently broken due to capture being an asynchronous process and the
rest of the code expecting capture to be synchronous (also, bgr vs rgb).
The best thing is all renderers now write the same format (currently
png).
I'm not sure what the author of that code was thinking (maybe trying to
do 4 pixels at a time?), but the resulting code still did only one.
Better to remove all the casts, use the right pointer type, and keep the
code clear.
Drawing sky chains first ensures that sky surfaces correctly block parts
of the map that should not be visible (by writing the correct depth to
the depth buffer when doing box or dome skies). Writing brush models
first means that the models (ammo boxes etc) could be visible when they
should not be.
While there's currently only the one still, this will allow the entities
to be multiply queued for multi-pass rendering (eg, shadows). As the
avoidance of putting an entity in the same queue more than once relies
on the entity id, all entities now come from the scene (which is stored
in cl_world in the client code for nq and qw), thus the extensive
changes in the clients.
The root transform of each hierarchy can be extracted from the first
transform of the list in the hierarchy, so no information is lost. The
main reason for the change is I discovered (obvious in hindsight) that
deleting root transforms was O(n) due to keeping them in an array, thus
the use of a linked list (I don't expect a hierarchy to be in more than
one such list), and I didn't want the transforms to be in a linked list.
GL and GLSL were drawing the view model after particles instead of
before. For GL, this is likely due to avoiding fog affecting the view
model (which I think is not the right thing to do), and GLSL due to
copying GL (because I had no idea at the time). This makes the two
renderers consistent with the software renderers, and might even speed
things up a little as that's one less set of blends to do when the
particles are covered by the view model (I don't expect much
difference).
While I doubt the difference is all that significant, this should speed
up entity rendering because it cuts out a lot of branching, and
eliminates scanning the same list multiple times only to not do anything
for large chunks of the list.
Since transforms now know the scene to which they belong, and they know
when they are root and when not, getting the transform code to manage
the scene roots is the best way to keep the list of root transforms
consistent.
It turns out cam_controls is for pointing the player model in the
direction of movement rather than controlling the camera (I should add
proper camera controls).
I finally spent the time to work out what it was trying to say. Still
not sure it's clear, but what is clear is that there was probably some
disagreement at Id about the orientation of the world.
They no longer spin like crazy. I don't know how, but I must have broken
something over the years as I'm sure Seth had the code working (and I
seem to remember seeing it working). In the process, clean up a lot of
the angle mess.
It's a lot easier to read (and see the difference between modes 2 and 3)
with all the ifs removed, and the state is properly is chasestate_t now
(though not handled properly on level reset etc).
The more advanced modes are rather broken (continuous spinning), but
they may have been for a while. The bulk of the various changes were due
to renaming viewstate's origin and angles to make their meaning more
explicit.
They've been near-identical for years, now they're only one. It proved
necessary to start merging the HUD code which for now is just a few cvar
declarations (not even init), but that should be a separate set of
commits.
The actual view and projection matrices are now consistent with vulkan,
with the vulkan-gl disparity moved into adjustment matrices. The goal is
to allow the same camera data and code to be used in all renderers. The
extra matrix multiplication shouldn't be too expensive as it occurs only
when the field of view (not often, under user control) or near and far
clip distances (very rarely) change.
It holds the data for a basic 3d camera (transform, fov, near and far
clip). Not used yet as there is much work to be done in cleaning up the
client code.
Handling of view angles is a little hacky at the moment, but this gets
the chase camera code and most of the common input code into one place,
which will make cleaning up the camera code much easier.
While both matrices had positive determinants in the first place, I find
the projection matrix easier to understand without all the negatives,
and having quake-x/vulkan-z positively parallel in the z-up matrix makes
that a lot easier to think about.
Regardless of whether the sky is spinning or not, the matrix needs to be
updated with the current origin in order to get the direction vector
right in the shader. Also, it's in the update that the required x-y
plane rotation gets in so the skies move in the correct direction.
This actually has at least two benefits: the transform id is managed by
the scene and thus does not need separate management by the Ruamoko
wrapper functions, and better memory handling of the transform objects.
Another benefit that isn't realized yet is that this is a step towards
breaking the renderers free of quake and quakeworld: although the
clients don't actually use the scene yet, it will be a good place to
store the rendering information (functions to run, etc).
I've run into a bit of an issue with transform management (really, just
need to make them owned by the scene, but that means creating a scene
for quake and quakeworld).
This is the bulk of the work for recording the resource pointer with
with builtin data. I don't know how much of a difference it makes for
most things, but it's probably pretty big for qwaq-curses due to the
very high number of calls to the curses builtins.
Closes#26
The zone memory block header is 64 bytes, so allocating a single 8 byte
selector is rather wasteful. Instead, allocate selectors in large chunks
(currently 64) and divvy them out as needed. Significantly reduces
memory pressure in large Ruamoko progs.
These add legacy support for basic float bitops (& | ^ ~). Avoiding the
instructions would require tot only the source to be converted, but also
the servers (as they do access those fields), and this seemed to be too
much.
It's not enforced a this stage, and it would be easy enough to handle,
but it turns out all the standard quake and quakeworld progs never used
... for the print functions: the behavior of PF_VarString was
undocumented and so... tough :P.
I had forgotten that unsigned division was different from signed
division (rather silly of me). However, with some testing and analysis,
unsigned true modulo is not needed as it's not possible to have
negative inputs and thus it's the same as remainder.
It now takes the function name to print in error message (passed on to
PR_Sprintf) and the argument number of the format string. The variable
arguments (in ...) are assumed to be immediately after the format
argument.
This loads the current return pointer into the specified register. No
offset is used (should make that an error, but for now any offset is
simply ignored). This is part of the fix for getting obj_msg_sendv to
work with return values.
With the return buffer in progs_t, it could not be addressed by the
progs on 64-bit machines (this was intentional, actually), but in order
to get obj_msg_sendv working properly, I needed a way to "bounce" the
return address of a calling function to the called function. The
cleanest solution I could think of was to add a mode to the with
instruction allowing the return pointer to be loaded into a register and
then calling the function with a 0 offset for the return value but using
the relevant register (next few commits). Testing promptly segfaulted
due to the 64-bit offset not fitting into a 32-bit value.
This gets message forwarding apparently working, though something isn't
quite right as qwaq-app doesn't update properly when I try to step
through the program, but that could be an error elsewhere.
The plan is to use the types to extract the number of parameters for a
selector when it is necessary to know the count. However, it'll probably
become useful for something else alter (these things seem to always do
so).
This takes care of the problems with PR_RESET_PARAMS (which has recently
become just a wrapper for PR_SetupParams) changing the stack and causing
PR_CallFunction to save the wrong stack pointer. Message forwarding is
currently broken for Ruamoko ISA progs, but that is due to not having a
valid pr_argc. However, I do have a plan involving extracting the
parameter count from the selector, but that's something for a later
commit. Everything else seems to be ok (my little game is working
nicely).
rua_obj was skipped because that looks to be a bit more work and should
be a separate commit.
This is to avoid the stack getting mangled when calling progs functions
with parameters.
I suppose having one builtin call another was a neat idea at the time,
and really could have been fixed by simply wrapping the calls with
push/pop frame, but this is probably faster.
obj_msg_sendv needs to push the parameters onto the stack for Ruamoko
progs, but this causes problems because PR_CallFunction winds up
recording the wrong stack pointer for progs functions, and nothing
restores the stack for builtins. The handling is basically the same as
for the return pointer.
It's a bit disconcerting seeing a builtin in the top 10 when builtins
are counted by call while progs functions are counted by instruction.
Also, show the total profile after the function top-10 list.
pr_argc cannot be used in Ruamoko progs because nothing sets it. This
fixes the parse errors and resulting segfault when trying to parse the
Vulkan pipeline config.
It's currently only 4 (or even 3 for v6) words, but this fixes false
positives when checking for null pointers in Ruamoko progs due to
pr_return pointing to the return buffer and thus outside the progs
memory map resulting in an impossible to exceed value.
Since Z_Malloc uses Z_TagMalloc to do the work, this ensures the check
is always run.
Also, add the check to Z_Realloc when it needs to adjust an existing
block.
Builtins that call progs with parameters now must always wrap the call
to PR_ExecuteProgram so that the data stack is properly preserved across
the call.
I need to do an audit of all the calls to PR_ExecuteProgram.
It turns out the return pointer still needs to be saved even when a
builtin sets up a chain call to progs, but rather than the pointer being
simply restored, it needs to be saved in the call stack exactly as if
the function was called directly by progs. This fixes the invalid self
issue quite thoroughly: parameter state seems to be correct across all
calls now.
I should set up an automated test now that I know and understand the
situation.
In Ruamoko ISA progs, the param pointers point to the stack and
generally must most be manipulated by builtins, and there is no need
anyway as Ruamoko doesn't have RCALL. Fixes the mangling of .super.
When calling a builtin, normally the return pointer needs to be
restored, but if the builtin changes the call depth (usually by
effecting "return foo()" as in support for objects, but possibly
setjmp/longjmp when they are implemented), then the return pointer must
not be restored. This gets vkgen past object allocation, but it dies
when trying to send messages to super. This appears to be a compiler
bug.
Since the operand types sort out the difference between asr and shr, no
need to give them different opnames. Means qfcc doesn't need to worry
about which one it's searching for.
Yet another redundant addressing mode (since ptr + 0 can be used), so
replace it with a variable-indexed array (same as in v6p). Was forced
into noticing the problem when trying to compile Machine.r.
I abandoned the reason for doing it (adding a pile of vector types), but
I liked the cleanup. All the implementations are hand-written still, but
at least the boilerplate stuff is automated.
Of course, only in Ruamoko progs, but it works quite nicely.
global_string is now passed the absolute address of the referenced
operand. With a little groveling through the progs stack, it should be
possible to resolve pointers to locals in functions further up the
stack.
This fixes Ruamoko's return format string. It looks like it's producing
the correct address (but doesn't show all the information it should),
but the rest of the debug code needs work locals.
It turned out I need locals count and params_start for debugging, so use
the progs version instead to bail early from PR_EnterFunction and
PR_LeaveFunction (which I had forgotten anyway, oops).
They now include base register index and effective address of the
operands (though it may be wrong for instructions that don't use a base
register for that operand).
This cleans up dprograms_t, making it easier to read and see what chunks
are in it (I was surprised to see only 6, the explicit pairs made it
seem to have more).
Intel hardware requires 32-byte alignment for lvec4 and dvec4.
Unfortunately, it turns out that my attempts to align progs data in qfcc
went awry do to the order block sizes are calculated when writing the
progs.
This makes return consistent with load, store, etc, though its
addressing mode is encoded in bits 5 and 6 of c rather than the opcode.
It turns out I had no tests for any of return's addressing modes other
than basic def references, so no tests needed changing.
The parameter defs are allocated from the parameter space using a
minimum alignment of 4, and varargs functions get a va_list struct in
place of the ...
An "args" expression is unconditionally injected into the call arguments
list at the place where ... is in the list, with arguments passed
through ... coming after the ...
Arguments get through to functions now, but there's problems with taking
the address of local variables: currently done using constant pointer
defs, which can't work for the base register addressing used in Ruamoko
progs.
With the update to test-bi's printf (and a hack to qfcc for lea),
triangle.r actually works, printing the expected results (but -1 instead
of 1 for equality, though that too is actually expected). qfcc will take
a bit longer because it seems there are some design issues in address
expressions (ambiguity, and a few other things) that have pretty much
always been there.
PR_SetupParams is new and sets up the parameter pointers so older code
that expects only up to 8 parameter will work with both v6p and Ruamoko
progs without having to check what progs are running. PR_SetupParams is
useful even when Ruamoko progs are expected as it reserves the required
space (respecting alignment) on the stack and returns a pointer to the
top (bottom? confusing) of the stack. PR_PushFrame and PR_PopFrame
need to be used around PR_SetupParams, regardless of using temp strings,
to avoid a stack leak (need to do an audit).
This is part of the work for #26 (Record resource pointer with builtin
function data). Currently, the data pointer gets as far as the
per-instance VM function table (I don't feel like tackling the job of
converting all the builtin functions tonight). All the builtin modules
that register a resources data block pass that block on to
PR_RegisterBuiltins.
The builtin and progs function data is overlaid so the extra data
doesn't cause too much memory to be used (it's actually 8 bytes smaller
now). The plan is to pre-compute the offsets based on the parameter
size and alignment data.
This will make it possible for the engine to set up their parameter
pointers when running Ruamoko progs. At this stage, it doesn't matter
*too* much, except for varargs functions, because no builtin yet takes
anything larger than a float quaternion, but it will be critical when
double or long vec3 and vec4 values are passed.
Just 32-bit rounding to next higher power of two, and base 2 logarithm.
Most importantly, they are suitable for use in initializers as they are
constant in, constant out.
As even the simplest v6p functions that take parameters but have no
local or temporary variables still have locals for the local copy of the
parameters, this is a both a good check for for the Ruamoko ISA as its
functions never have locals (everything's on the progs data stack), and
an optimization for v6p functions that have no params or locals (simple
getters (very rare?), most .ctor, etc).
And fix an incorrect definition for RETURN_QUAT.
Prefixed MAX_STACK_DEPTH and LOCALSTACK_SIZE (and LOCALSTACK_SIZE got an
extra _).
The rest is just edits to documentation comments.
ldconst isn't implemented yet but the plan is to load various constants
(eg, 0, 1, 2, pi, e, ...).
Stack adjust is useful for adding an offset to the stack pointer without
having to worry about finding it (and it checks for alignment).
nop is just that :)
Due to how OP_RETURN works, a destination is required for any function
returning data, but the caller may not have allocated any space for the
value. Thus the VM maintains a buffer into which the data can be put and
ignored. It also makes a good place for return values when the engine
calls Ruamoko code as trusting progs code with return sizes seems like a
recipe for disaster, especially if the return location is on the C
stack.
It turned out that address mode B was redundant as C with 0 offset
(immediate) was the same (except for the underlying C code of course,
but adding st->b is very cheap). This allowed B to be used for
entity.field for all transfer operations. Thus instructions 0-3 are now
free as load E became load B, and other than the specifics of format
codes for statement printing, transfers+lea are unified.
This makes the v6p instruction table consistent with the ruamoko
instruction table, and clears up some of the ugliness with the load,
store, and assign instructions (. .= and = are now spelled out). I think
I'd still prefer an enum code (faster) but at least this is more
readable.
long is ignored for double, and v6p progs are stuck with 32 bits for
longs (don't feel like extending v6p any further), but the basics are
there for Ruamoko.
short is ignored for ints because the minimum size is 32, and signed is
just noise for ints anyway (and no chars, so...).
unsigned, however, is finally implemented properly (or at least seems to
be working correctly: tests pass after getting things compiling again,
and lt.u is used where it should be :)
And provide a table for such for qfcc and the like. With this, using
pr_double_t (for example) in C will cause the double value to always be
8-byte aligned and thus structures shared between gcc and qfcc will be
consistent (with a little fuss to take care of the warts).
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
This required delaying the setting of the return pointer by call until
after the current pointer had been saved, and thus passing the desired
pointer into PR_CallFunction (which does have some advantages for C
functions calling progs functions, but some dangers too (should ensure a
128 byte (32 word) buffer when calling untrusted code (which is any,
really)).
This fixes the issue of the data stack not being restored properly
because the returning function needs to return a value from its local
variables (stored on the stack) and accessing stack data below the stack
pointer is a bad idea (sure, no interrupts yet, but who knows...).
Call's operand c is used to specify where the return value of the
function is to be stored. This gets both the correct function being
called, and the value being returned correctly. Test still fails due to
the stack restoration issue.
It currently fails for two reasons:
- call's mode selection is incorrect (never updated from when there was
only the one call instruction and the mode was encoded in operand c)
- return should automatically restore the stack pointer to the value it
had on entry to the function, thus allowing local values stored on
the stack to be safely returned.