The renderer's LineGraph now takes a height parameter, and netgraph now
uses cl_* cvars instead of r_* (which never really made sense),
including it's own height cvar (the render graphs still use
r_graphheight).
The render plugins have made a bit of a mess of getting at the data and
thus it's a tad confusing how to get at it in different places. Really
needs a proper cleanup :(
conwidth and conheight have been moved into vid.conview (probably change
the name at some time), and scr_vrect has been replaced by a view as
well. This makes it much easier to create 2d elements that follow the
screen size (taking advantage of a view's gravity) which will, in the
end, make changing the window size easier.
It now processes 4 pixels at a time and uses a bit mask instead of a
conditional to set 3 of the 4 pixels to black. On top of the 4:1 pixel
processing and avoiding inner-loop conditional jumps, gcc unrolls the
loop, so Draw_FadeScreen itself is more than 4x as fast as it was. The
end result is about 5% (3fps) speedup to timedemo demo1 on my 900MHz
EEE Pc when nq has been hacked to always draw the fade-screen.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Because LoadImage uses Hunk_TempAlloc, the face images need to be copied
individually. Really, what's neeeded is to be able to load the image
data into a pre-allocated buffer (ideally, the staging buffer for
vulkan, but that's for later).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
The built up "path" name of the handle resource was not always surviving
the intervening call to cexpr_eval_string (in particular, when other
handles were created in the process of creating a handle). Rather than
simply increase the number of va buffers (where would it end?), just
regenerate the path when adding the new handle. It's probably quick
enough, and the code is not usually not on a critical path.
I was reading about multi-pass rendering on mobile devices
(https://developer.oculus.com/blog/loads-stores-passes-and-advanced-gpu-pipelines/)
and discovered that I had used the wrong flags (but then, I think Graham
Sellers had, too, since used his Vulkan Programming Guide as a
reference). Doesn't seem to make any difference on desktop, but as
there's no loss there, but potential gains on mobile, I'd say it's a
win.
I'm not sure that the mismatch between refdef_t and the assembly defines
was a problem (many fields unused), but the main problem was due to
execute permission on the pages: one chunk of asm was in the data
section, and the patched code was not marked as being executable (due to
such a thing not existing when quake was written).
This ensures that fov_y is not calculated until after the render view
size is known and thus doesn't become some crazy angle (that happens to
result in a negative tan). Fixes upside-down-quake :)
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
Not only does it makes sense to centralize the setting of viewport and
scissor, but it's actually necessary in order to fix the upside-down
rendering on windows.
This gets the GL and GLSL renderers working for the -win targets... sort
of: they are upside down and GLSL's bsp surfaces are black (same as
Vulkan). However, with this, all 5 renderers at least limp along for
-win, 4/5 work for -sdl.
It turns out the dd and dib "driver" code is very specific to the
software renderer. This does not fix the segfault on changing video
mode, but I do know where the problem lies: the window is being
destroyed and recreated without recreating the buffers. I suspect a
clean solution to this will allow for window resizing in X as well.