It turns out that if the barriers are set on the app window, and the app
grabs the pointer (even passively), barrier events will no longer be
sent to the app. However, creating the barriers on the root window and
the events are selected on the root window, the barrier events are sent
regardless of the grab state.
Other subsystems, especially low-level input drivers, need to know when
the app has input focus. eg, as the evdev driver uses the raw stream
from the kernel, which has no idea about X application focus (in fact,
it seems the events are shared across multiple apps without any issue),
the evdev driver sees all the events thus needs to know when to drop
them.
It turns out to be possible to get a barrier event at the same time as a
configure notify event (which rebuilds the barriers), and trying to
release the pointer at such a time results in a bad barrier error and
program crash. Thus check the event barrier against the currently
existing barriers before attempting to release the pointer.
This does mean that a better mechanism for sequencing window
repositioning and barrier creation may be required.
This should be a much friendlier way of "grabbing" input, though I
suspect that using raw keyboard events will result in a keyboard grab,
which is part of the reason for wanting a friendly grab.
There does seem to be a problem with the mouse sneaking out of the
top-right and bottom-left corners. I currently suspect a bug in the X
server, but further investigation is needed.
This is needed for getting window position info into in_x11 without
exposing more globals, and is likely to be useful for other things,
especially as it doubles as a resize event when that's eventually
supported.
This is necessary in focus-follows-mouse environments (at least for
openbox, but it wouldn't surprise me if most other WMs behave the same
way) because the WMs don't set focus when the pointer is grabbed (which
XInput does before the WM sees the enter event). This is especially
important when the window is fullscreen on a multi-monitor setup as
there is no border to *maybe* catch the mouse before it enters the
window.
Right now, only raw pointer motion and button events are handled, and
the mouse escapes the window, and there are some issues with focus in
focus-follows-mouse environments. However, this should be a much nicer
setup than DGA.
The current limit is still 32. Dealing with it properly will take some
rather advanced messing with XInput, and will be necessary assuming
non-XInput support is continued.
There's now IN_X11_Preinit, IN_X11_Postinit (both for want of better
names), and in_x11_init. The first two are for taking care of
initialization that needs to be done before window creation and between
window creation and mapping (ie, are very specific to X11 stuff) while
in_x11_init takes care of the setup for the input system. This proved
necessary in my XInput experimentation: a passive enter grab takes
effect only when the pointer enters the window, thus setting up the grab
with the pointer already in the window has no effect until the pointer
leaves the window and returns.
This was always a horrible hack just to get the screen centered on the
window back when we were doing fullscreen badly. With my experiments
with XInput, it has proven to be a liability (I'd forgotten it was even
there until it started imposing a 2s delay to QF's startup).
Input driver can now have an optional init_cvars function. This allows
them to create all their cvars before the actual init pass thus avoiding
some initialization order interdependency issues (in this case, fixing a
segfault when starting x11 clients fullscreen due to the in_dga cvar not
existing yet).
Well... it could be done better, but this works for now assuming it's in
/usr/include (and it's correct for mxe builts). Does need proper
autoconfiscation, though.
Seems to work nicely for keyboard (though key bindings are not
cross-platform). Mouse not tested yet, and I expect there are problems
with it for absolute inputs (yay mouse warp :P).
Mouse axis and button names are handled internally (and thus
case-insensitive).
Key names are handled by X11. Case-sensitivity is currently determined
by Xlib.
The cooked inputs (ie_key, ie_mouse) are intended for UI interaction, so
generally should have priority over the raw events, which are intended
for game interaction.
This has smashed the keydest handling for many things, and bindings, but
seems to be a good start with the new input system: the console in
qw-client-x11 is usable (keyboard-only).
The button and axis values have been removed from the knum_t enum as
mouse events are separate from key events, and other button and axis
inputs will be handled separately.
keys.c has been disabled in the build as it is obsolute (thus much of
the breakage).
I'm undecided on how to handle application focus (probably gain/lose
events), and the destination handler has been a stub for a while. One less
dependency on the "old" key handling code.
I'm undecided if the pasted text should be sent as a string rather than
individual key events, but this will do the job for now as it gets me
closer to being able to test everything.
It seems that under certain circumstances (window managers?), select is not
reliable for getting key events, so use of select has been disabled until I
figure out what's going on and how to fix it.
For the mouse in x11, I'm not sure which is more cooked: deltas or
window-relative coordinates, but I don't imagine that really matters too
much. However, keyboard and mouse events suitable for 2D user interfaces
are sent at the same time as the more game oriented button and axis events.
The x11 keyboard and mouse devices are really core input devices rather
than x11 input devices in that keyboard and mouse will be present on most
systems and thus not specific to the main user interface (x11, windows,
etc).
Now nothing works at all ;) However, that's only because the binding
system is incomplete: the X11 input events are getting through to the
binding system, so now it's just a matter of getting that to work.
The common input code (input outer loop and event handling) has been
moved into libQFinput, and modified to have the concept of input drivers
that are registered by the appropriate system-level code (x11, win,
etc).
As well, my evdev input library code (with hotplug support) has been
added, but is not yet fully functional. However, the idea is that it
will be available on all systems that support evdev (Linux, and from
what I've read, FreeBSD).
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
The fact that numleafs did not include leaf 0 actually caused in many
places due to never being sure whether to add 1. Hopefully this fixes
some of the confusion. (and that comment in sv_init didn't last long :P)
Modern maps can have many more leafs (eg, ad_tears has 98983 leafs).
Using set_t makes dynamic leaf counts easy to support and the code much
easier to read (though set_is_member and the iterators are a little
slower). The main thing to watch out for is the novis set and the set
returned by Mod_LeafPVS never shrink, and may have excess elements (ie,
indicate that nonexistent leafs are visible).
-999999 seems to be a hold-over from the software renderer passed
through both gl renderers. I guess it didn't matter in the gl renderers
due to various draw hacks, but it made quite a difference in vulkan.
Fixes the view model covering the hud.
Quake just looked wrong without the view model. I can't say I like the
way the depth range is hacked, but it was necessary because the view
model needs to be processed along with the rest of the alias models
(didn't feel like adding more command buffers, which I imagine would be
expensive with the pipeline switching).