This has use when the order of components in the pool affects draw order
(or has other significance), especially at the subpool level. I plan to
use it for fixing overlapping windows in imui.
Shaped text is cached using all the shaping parameters as well as the
text itself as a key. This makes text shaping a non-issue for imui when
the text is stable, taking my simple test from 120fps to 1000fps
(optimized build).
As I had long suspected, building large hierarchies is fiendishly
expensive (at least O(N^2)). However, this is because the hierarchies
are structured such that adding high-level nodes results in a lot of
copying due to the flattened (breadth-first) layout (which does make for
excellent breadth-first performance when working with a hierarchy).
Using tree mode allows adding new nodes to be O(1) (I guess O(N) for the
size of the sub-tree being added, but that's not supported yet) and
costs only an additional 8 bytes per node. Switching from flat mode to
tree mode is very cheap as only the additional tree-related indices need
to be fixed up (they're almost entirely ignored in flat mode). Switching
from tree to flat mode is a little more expensive as the entire tree
needs to be copied, but it seems to be an O(N) (size of the tree).
With this, building the style editor window went from about 25% to about
5% (and most of that is realloc!), with a 1.3% cost for switching from
tree mode to flat mode.
There's still a lot of work to do (supporting removal and tree inserts).
By default, horizontal and vertical layouts expand to fill their parent
in their on-axis direction (horizontally for horizontal layouts), but
fit to their child views in their off-axis.
Flexible space views take advantage of auto-expansion, pushing sibling
views such that the grandparent view is filled on the parent view's
on-axis, and the parent view is filled by the space in the parent view's
off-axis. Flexible views currently have a background fill, allowing them
to provide background filling of the overall view with minimal overdraw
(ancestor views don't need to have any fill at all).
The biggest change was splitting up the job resources into
per-render-pass resources, allowing individual render passes to
reallocate their resources without affecting any others. After that, it
was just getting translucency and capture working after a window resize.
This takes care of element order stability. It did need reworking the
mouse tracking code (including adding an active flag to views), but now
buttons seem to work correctly.
TextContent seems redundant at this stage since a text view is always
sized to its content, and PercentOfParent doesn't work yet. Pixels
definitely works and Null seems to work in that it does no sizing or
positioning. Vertical layout is supported but not yet tested, similar
for ChildrenSum, but I can have two buttons side by side.
It does almost nothing (just puts a non-function button on the screen),
but it will help develop the IMUI code and, of course, come to help with
debugging in general.
Both passage and simple text are supported, but only simple text has
been tested at this stage. However, as passage text was taken directly
from rua_gui.c and formed the basis for simple text rendering, I expect
it's at least close to working.
The same underlying mechanism is used for both simple text strings and
passages, but without the intervening hierarchy of paragraphs etc.
Results in only the one view for a simple text string.
I'm not sure I like fontconfig (docs are...), but it is pretty standard,
and I was able to find some reasonable examples on stackexchange
(https://stackoverflow.com/questions/10542832/how-to-use-fontconfig-to-get-font-list-c-c).
Currently, only the one font is handled, no font sets for fall backs
etc. It's meant for the debug UI I'm working on, so that shouldn't be a
big deal.
It's usually desirable to hide the cursor when playing quake, but when
using the console, or in various other states, being able to see the
cursor can be quite important.
It's currently very simplistic (visible, not visible), but it gets
things started for making QF more usable in a windowed environment (not
having a visible cursor was fine in DOS, or when full screen, but not
when windowed (and not actively playing).
This is necessary because fisheye rendering draws the scene up to 6
times per frame, which results in many of the limits being hit
prematurely, but updating r_framecount that often breaks dynamic lights.
Really? More to clean up before (vulkan) bsp rendering is thread-safe?
However, R_MarkLeaves was pretty close: just oldviewleaf and
visframecount, but that's still too much. Also, the reliance on
r_refdef.worldmodel irked me.
While there will be some GPU resources to sort out for multi-pass bsp
processing, I think this is the last piece required before shadow passes
can be implemented.
Samplers have no direct relation to render passes or pipelines, so
should not necessarily be in the same config file. This makes all the
old config files obsolete, and quite a bit of support code in vkparse.c.
This gets screenshots working again. As the implementation is now a
(trivial) state machine, the pause when grabbing a screenshot is
significantly reduced (it can be reduced even further by doing the png
compression in a separate thread).
The new system seems to work quite nicely with brush models, which was
the intent, but it's nice to see. Hopefully, it works well when it comes
to shadows. There's still water warp and screen shots to fix, and
fisheye to get working, as well.
Gotta be sure :)
With the new system mostly up and running (just bsp rendering and
descriptor sets/layout handling to go, and they're independent of the
old render pass system), the old system can finally be cleared out.
The particles die instantly due to curFrame not updating (next commit),
but otherwise work nicely, especially sync is better (many thanks to
Darian for his help with understanding sync scope).
This was necessary to get the 2d elements drawn after the fence had been
fired (thus indicating descriptors could be updated) but before actual
rendering of the 2d elements (which is how it was done before the switch
to the new system).
It turns out there was a bug in the old iqm push constants spec (I still
need to figure out how to use layouts in the new system so I can
completely delete the old).
The output system's update_input takes a parameter specifying the render
step from which it is to get the output view of that step and updates
its descriptors as necessary.
With this, the full render job is working for alias models (minus a few
glitches).
Many thanks to Peter and Darian for clearing up my misunderstanding of
how vkResetCommandPool works. The manager creates command buffers from
the command pool on an as-needed basis (when the queue of available
buffers is empty), and keeps track of those buffers in a queue. When the
pool is reset, the queues (one each for primary and secondary command
buffers) are reset such that the tracked buffers are available again.
Imageless framebuffers would probably be easier and cleaner, but this
takes care of the validation error attempting to present the second
frame (because rendering was being done to the first frame's swapchain
image instead of the second frame's).
Command buffer pools can't be reset until the commands have all been
executed. Having per-frame pools makes keeping track of pool lifetime
fairly easy.
The new render system now passes validation for the first frame (but
no drawing is done by the various subsystems yet). Something is wrong
with how swap chain semaphores are handled thus the second frame fails.
Frame buffer attachments can now be defined externally, with
"$swapchain" supported for now (in which case, the swap chain defines
the size of the frame buffer).
Also, render pass render areas and pipeline viewport and scissor rects
are updated when necessary.
I don't like the current name (update_framebuffer), but if the
referenced render pass doesn't have a framebuffer, one is created. The
renderpass is referenced via the active renderpass of the named render
step. Unfortunately, this has uncovered a bug in the setup of renderpass
objects: main.deferred has output's renderpass, and main.deferred_cube
and output have bogus renderpass objects.
The string type is useful for passing around strings (the only thing
that they can do, currently), particularly as arguments to functions.
The voidptr type is (currently) never generated by the core cexpr
system, but is useful for storing pointers via cexpr (probably a bit of
a hack, but it seems to work well in my current use).
Being able to specify the types in the push constant ranges makes it a
lot easier to get the specification correct. I never did like having to
do the offsets and sizes by hand as it was quite error prone. Right now,
float, int, uint, vec3, vec4 and mat4 are supported, and adheres to
layout std430.
This is with the new render job scheme. I very much doubt it actually
works (can't start testing until everything passes, and it's disabled
for the moment (define in vid_render_vulkan.c)), but it's helping iron
out what more is needed in the render system.
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
The warning flag check worked too well: it enabled the warning and
autoconf's default main wanted the const attribute. The bug has been
floating around for a while, it seems.
set_while checks the iterator's current element membership and skips to
the first element with different membership. ie, if the current element
is in the set, then set_while returns the next element *not* in the set,
but if the current is not in the set, then set_while returns the next
element that *is* in the set. Rather handy for dealing with clusters of
set elements.
I never liked the various hacks I had come up with for representing
resource handles in Ruamoko. Structs with an int were awkward to test,
pointers and ints could be modified, etc etc. The new @handle keyword (@
used to keep handle free for use) works just like struct, union and
enum in syntax, but creates an opaque type suitable for a 32-bit handle.
The backing type is a function so v6 progs can use it without (all the
necessary opcodes exist) and no modifications were needed for
type-checking in binary expressions, but only assignment and comparisons
are supported, and (of course) nil. Tested using cbuf_t and QFile: seems
to work as desired.
I had considered 64-bit handles, but really, if more than 4G resource
objects are needed, I'm not sure QF can handle the game. However, that
limit is per resource manager, not total.
When using SET_STATIC_INIT, the set size needs to be the same as what
set_new() would create for the same number of bits, otherwise the set
will possibly get resized incorrectly (which is bad news when the array
was allocated using alloca). While this is really a symptom of
set_bits_t not getting the right size, getting weird segfaults is not a
good way to diagnose the problem, and set_bits_t being the wrong size is
just a minor pessimism.
Really, a bit more than stub as the basic code is there, but nothing
works properly yet due to missing resources (especially descriptor sets
and pools), and the frame buffer creation is still disabled.
The step dependencies are not handled yet as threading isn't used at
this stage, but since I'll require dependencies to always come earlier,
this shouldn't cause a problem.
This fixes a Sys_Error when loading the level for the first demo (and
probably many other times). It was mod_numknown getting set to 0 that
triggered the issue, but that seems to be necessary for the other
renderers. I think the whole model loading and caching system needs an
overhaul as this doesn't feel quite right due to removing part of the
advantage of caching the model data.
Requiring top-level {} or () for (usually) hand-written files is awkward
and even a little error prone, and certainly ugly at times. With this,
loaders that expect a particular format can specify the format a little
more directly.
The jobs will become the core of the renderer, with each job step being
one of a render pass, compute pass, or processor (CPU-only) task. The
steps support dependencies, which will allow for threading the system in
the future.
Currently, just the structures, parse support, and prototype job
specification (render.plist) have been implemented. No conversion to
working data is done yet, and many things, in particular resources, will
need to be reworked, but this gets the basic design in.