Light styles and shadows aren't implemented yet.
The map's entities are used to create the lights, and the PVS used to
determine which lights might be visible (ie, the surfaces they light).
That could do with some more improvements (eg, checking if a leaf is
outside a spotlight's cone), but the concept seems to work.
Double benefit, actually: faster when building a fat PVS (don't need to
copy as much) and can be used in multiple threads. Also, default visiblity
can be set, and the buffer size has its own macro.
Useful for avoiding a pile of wrapper functions that merely pass on
command-specific data to the actual implementation. Used to clean up the
wrappers in nq and qw cl_input.c
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
The plan is to have a fully component based entity system. This adds
hierarchical transforms. Not particularly useful for quake itself at
this stage, but it will allow for much more flexibility later on,
especially when QuakeForge becomes more general-purpose.
This seems to be pretty close to as fast as it gets (might be able to do
better with some shuffles of the negation constants instead of loading
separate constants).
It's not used yet as work needs to be done to better support generic
entities, but this is the next step to real-time lighting (though, to be
honest, I expect it will be too slow to be usable).
The main purpose is to allow fluent-style:
const char *targetname = PL_String (PL_ObjectForKey (entity, "targetname"));
if (targetname && !PL_ObjectForKey (targets, targetname)) {
PL_D_AddObject (targets, targetname, entity);
}
[note: the above is iffy due to ownership of entity, but the code from
which the above comes works around the issue]
There's still the memory management itself to clean up, but the main
code no longer uses any static/global variables (holdover from when the
function was recursive rather).
The static libs are used to build the plugins, but make it easy to use
only those modules needed for tests. Fixes the link error when running
"make check" with non-static plugins.
Static lights are yet to come (so the screen is black most of the time),
but dynamic lights work very nicely (and look very good) despite the
falloff being incorrect.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
Lighting doesn't actually do lights yet, but it's producing pixels.
Translucent seems to be working (2d draw uses it), and compose seems to
be working.
This gets the alias model render pass and pipeline passing validation.
I don't know why I didn't add the subpass field to the
VkGraphicsPipelineCreateInfo parser def, though it could be I simply
missed it, or I thought I wouldn't need it at the time.
Due to wanting to access array sizes when parsing uint32_t type values,
parse_uint32_t needs to handle size_t values even though it throws out
any excess bits.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
Setting the result type cexpr_exprval tells cexpr to simply return whoe
exprval object rather than the referenced value, thus allowing the
caller to check the type when the expression is context sensitive.
The order in which keys are added to the dictionary object is
maintained. Adding a key after removing an old key adds the new key to
the end of the list rather than reusing the old key's spot.