And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
If the src type is not a class, there is no inheritance chain to walk.
Fixes a segfault when returning self after a syntax error in the
following:
+(EditStatus *)withRect:(Rect)rect
{
return [[[self alloc] initWithRect:rect]:
}
-setCursorMode:(CursorMode)mode
{
cursorMode = mode;
return self;
}
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
All simple type checks are now done using is_* helper functions. This
will help hide the implementation details of the type system from the
rest of the compiler (especially the changes needed for type aliasing).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
While expression symbols worked for what they are, they weren't so good
for ivar access because every ivar of a class (and its super classes)
would be accessed at method scope creation, generating spurious access
errors if any were private. That is, when the access checks worked at
all.
This is for adding methods to classes and protocols via their interface,
not for adding methods by adding protocols (they still get copied).
Slightly more memory efficient.
Duplicate methods in an interface (especially across protocols and
between protocols and the interface) are both harmless and even to be
expected. They certainly should not cause the compiler to demand
duplicate method implementations :)
This is actually a double issue: when a class implementing a protocol
used the protocol in @protocol(), not only would the protocol get
emitted as part of the class data specifying that the class conforms to
the protocol, a second instance would be emitted again when @protocol()
was used. On top of that, only the instance referenced by @protocol()
would be initialized. Now, both class emission and @protocol() get their
protocol def from the same place and thus only one, properly
initialized, protocol instance is emitted.
Unlike gcc, qfcc requires foo to be defined, not just declared (I
suspect this is a bug in gcc, or even the ObjC spec), because allowing
forward declarations causes an empty (no methods) protocol to be
emitted, and then when the protocol is actually defined, one with
methods, resulting in two different versions of the same protocol, which
comments in the gnu objc runtime specifically state is a problem but is
not checked because it "never happens in practice" (found while
investigating gcc's behavior with @protocol and just what some of the
comments about static instance lists meant).
This far better reflects the actual meaning. It is very likely that
ty_none is a holdover from long before there was full type encoding and
it meant that the union in qfcc's type_t had no data. This is still
true for basic types, but only if not a function, field or pointer type.
If the type was function, field or pointer, it was not true, so it was
misnamed pretty much from the start.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).
type_obj_class is no longer a class, so its ivars are not stored in
type_obj_class.t.class->ivars but rather type_obj_class.t.symtab.
This fixes the segfault Spirit and Randy were experiencing.
In passing, correct the unneeded emission of meta class ivars for non-root
classes. This should make for much smaller progs that use classes.
But reset current_symtab to its prior value when done. This fixes a
segfault caused by initializing the class system while parsing a struct
(eg, one of the members is of type id).
type_id is implemented as a pointer to "struct obj_object" (ie, not really
a class), so the correct check is to ensure the type is:
1 a pointer
2 to a struct
3 using the same symbol table as type_obj_object