The parameter will be passed on to the pipeline tasks in their task
context, allowing for communication between the subsystem calling
QFV_RunRenderPass and the pipeline tasks (for the case of lighting,
passing the current matrix base index).
They're now qfv_* and shared within the vulkan renderer. qfv_z_up cannot
be shared across renderers as they have their own ideas for the world
frame. qfv_box_rotations currently can't be shared across renderers
because if the Y-axis flip and the way it's handled, but sharing should
be achievable by modifying the other renderers to handle the sides
correctly (glsl and gl need to do lookups for the side enums, sw just
needs to be shown which way is up).
Using set iterators can be quite a lot faster for sparse sets due to the
function call overhead in testing each element. Times for ad_tears
dropped from about 1200us to about 670us (hard to say due to there being
only 3 data points and a lot of noise in the time).
If a step has process tasks, any render or compute
pipelines/renderpasses are **not** run automatically: the idea is the
process tasks need to run the relevant pipelines in a custom manner but
needs the objects to be created.
The recent light changes highlighted that the renderer does not own the
efrags (segfault in qwaq when shutting down my test scene). After
digging through the history of efrag clearing, it turns out that the
renderer never owned them, I just didn't understand the concept of
scenes at the time that I moved efrags into the renderer.
This eliminates the O(N^2) (N = map leaf count) operation of finding
visible lights and will later allow for finer culling of the lights as
they can be tested against the leaf volume (which they currently are
not as this was just getting things going). However, this has severely
hurt ad_tears' performance (I suspect due to the extreme number of
leafs), but the speed seems to be very steady. Hopefully, reconstructing
the vis clusters will help (I imagine it will help in many places, not
just lights).
The grid calculations are modified from those of Inigo Quilez
(https://iquilezles.org/articles/filterableprocedurals/), but give very
nice results: when thin enough, the lines fade out nicely instead of
producing crazy moire patterns. Though currently disabled, the default
planes are the xy, yz and zx planes with colored axes.
Based on the article
(https://developer.nvidia.com/content/depth-precision-visualized), this
should give nice precision behavior, and removes the need to worry about
large maps getting clipped. If I'm doing my math correctly, despite
being reversed, near precision is still crazy high. And (thanks to the
reversed depth) about a quarter of a unit (for near clip of 4) out at 1M
unit distance.
Due to doing most of my testing using the demos, I hadn't noticed the
double-draw until flying around with the debug camera (and it showed as
a weird shimmer behind the sky layers).
The lights debug is from the light splat experiment (this is why I kept
the code), and the bsp debug is based on that. Both currently disabled
for now until I get UI controls in.
SCR_UpdateScreen_Legacy now takes only the screen functions pointer (it
didn't need camera or realtime), and the camera sizzle code has been
moved into one place to make cleaning it up easier (when I get around to
auditing AngleVectors etc).
There's still the problem with unused variables when building for
windows because of vulkan debug stuff, but this fixes the important
errors. It actually still works (at least under wine).
The biggest change was splitting up the job resources into
per-render-pass resources, allowing individual render passes to
reallocate their resources without affecting any others. After that, it
was just getting translucency and capture working after a window resize.
It looks horrible due to the lack of lighting etc, but it's good enough
for basic testing, especially of my render job design (that passed with
flying colors).
I'm not sure I like fontconfig (docs are...), but it is pretty standard,
and I was able to find some reasonable examples on stackexchange
(https://stackoverflow.com/questions/10542832/how-to-use-fontconfig-to-get-font-list-c-c).
Currently, only the one font is handled, no font sets for fall backs
etc. It's meant for the debug UI I'm working on, so that shouldn't be a
big deal.
This let me keep clearValue's simple default rgba float interpretation,
but also have full control over access to the float32, int32 and uint32
fields.
This is necessary because fisheye rendering draws the scene up to 6
times per frame, which results in many of the limits being hit
prematurely, but updating r_framecount that often breaks dynamic lights.
Really? More to clean up before (vulkan) bsp rendering is thread-safe?
However, R_MarkLeaves was pretty close: just oldviewleaf and
visframecount, but that's still too much. Also, the reliance on
r_refdef.worldmodel irked me.
While there will be some GPU resources to sort out for multi-pass bsp
processing, I think this is the last piece required before shadow passes
can be implemented.