The tests fail as they exercise how the cache *SHOULD* work rather than
how it does now.
The tests do currently pass for the pending work I've done on the cache
system, but while working on it, I remembered why I reworked cache
allocation...
The essential problem is that sounds are loaded into the cache, which is
fine for synchronous output targets, but has proven to be a minefield
for asynchronous output targets (JACK, ALSA).
The reason for the minefield is the hunk takes priority over the cache,
and is free to move cache blocks around, and *even dispose of them
entirely* in order to satisfy memory allocations from either end of the
hunk. Doing this in an entirely single-threaded process (as DOS Quake
was) is perfectly safe, as the users of the cache just reload the
pointer each time, and bail if it's null (meaning the block has been
freed), or even cause the data to be reloaded if possible (I'm a little
fuzzy on the details for that as I didn't write that code). However, in
multi-threaded code, especially real-time (JACK, possibly ALSA), it's a
recipe for disaster. The 4cab5b90e6 commit was a (mostly) successful
attempt to mitigate the problem by allocating the cache blocks from the
high-hunk (thus minimizing any movement caused by low-hunk allocations),
it resulted in cache allocates and regular high-hunk allocations somehow
getting intertwined: while investigating just how much memory ad_tears
needs (somewhere between 192MB and 256MB), I got "trashed sentinel"
errors and upon investigation, I found what looks very suspiciously like
audio data written across a hunk control block.
I've decided that the cache allocation *algorithm* should be reverted to
how it was originally designed by Id (details will remain "modern"), but
while working on the tests, I remembered why I had done the changes in
the first place (above story). Thus the work on reverting the cache
allocation can't go in until I get sound memory management independent
of the cache. The tests are going in now so I have a constant reminder :)
And make Sys_MaskPrintf take the developer enum rather than just a raw
int.
It was actually getting some nasty hunk corruption errors when under
memory pressure that made it clear the sound system needs some work.
I always wanted it there, there were dependency issues at the time. I
guess they got cleaned up for the most part since then (other than
cd_file, but it's on my hit-list).
I had been trimming for the solid leaf, but not the empty leafs. I had
assumed the vis tool would trim the bits, but it seems to not be
reliable (though it could be a bug in qfvis, I think the map in question
is one of my test maps).
The texture animation data is compacted into a small struct for each
texture, resulting in much less data access when animating the texture.
More importantly, no looping over the list of frames. I plan on
migrating this to at least the other hardware renderers.
I found a test map with no texture data. Even after fixing the bsp
loader, vulkan didn't like it. Now vulkan is happy. The "Missing" text
is full-bright magenta on a dim grey background so it should be visible
in any lighting conditions.
More host cleanup. The client now processes input itself, as does the
server, but only if running a dedicated server. The server no longer
blocks sound when loading a map as it shouldn't know anything about
sound. This will probably need something done in the client, but moving
the server into a separate thread will have that effect anyway.
Conflagrant Rodent has a sub-model with 0 faces (double bit error?)
causing simply counting faces to get out of sync with actual model
starts thus breaking *all* brush models that come after it (including
other maps). Thus be a little less lazy in figuring out model start
faces.
The models are broken up into N sub-(sub-)models, one for each texture,
but all faces using the same texture are drawn as an instance, making
for both reduced draw calls and reduced index buffer use (and thus,
hopefully, reduced bandwidth). While texture animations are broken, this
does mark a significant milestone towards implementing shadows as it
should now be possible to use multiple threads (with multiple index and
entid buffers) to render the depth buffers for all the lights.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
Sub-models and instance models need an instance data buffer, but this
gets the basics working (and the proof of concept). Using arrays like
this actually simplified a lot of the code, and will make it easy to get
transparency without turbulence (just another queue).
The gl water warp ones have been useless since very early on due to not
doing water warp in gl (vertex warping just didn't work well), and the
recent water warp implementation doesn't need those hacks. The rest of
the removed flags just aren't needed for anything. SURF_DRAWNOALPHA
might get renamed, but should be useful for translucent bsp surfaces
(eg, vines in ad_tears).
One more step towards BSP thread-safety. This one brought with it a very
noticeable speed boost (ie, not lost in the noise) thanks to the face
visframes being in tightly packed groups instead of 128 bytes apart,
though the sw render's boost is lost in the noise (but it's very
fill-rate limited).
This is next critical step to making BSP rendering thread-safe.
visframe was replaced with cluster (not used yet) in anticipation of BSP
cluster reconstruction (which will be necessary for dealing with large
maps like ad_tears).
The main goal was to get visframe out of mnode_t to make it thread-safe
(each thread can have its own visframe array), but moving the plane info
into mnode_t made for better data access patters when traversing the bsp
tree as the plane is right there with the child indices. Nicely, the
size of mnode_t is the same as before (64 bytes due to alignment), with
4 bytes wasted.
Performance-wise, there seems to be very little difference. Maybe
slightly slower.
The unfortunate thing about the change is the plane distance is negated,
possibly leading to some confusion, particularly since the box and
sphere culling functions were affected. However, this is so point-plane
distance calculations can be done with a single 4d dot product.
The map uses 41% of a 4k light map scrap, and 512 texture descriptors
wasn't enough for vulkan. Ouch. I do need to get cvars on these things,
but this will do for now (decades later...)
Sounds in Arcane Dimensions (at least those used by ad_tears) specify
start and end cue points. The code was using only the final point in the
list and thus breaking looped sounds. Now, the first cue point is used
as the loop start, and the second (if present), the sample length. Both
are bounds-checked against the wav's sample count. Fixes sound locking
up during the first seconds in ad_tears.
This one is ancient: the code was essentially unmodified since release
(just some formatting). Malformed vectors could sneak through due to map
bugs (eg, "angles -90" instead of "angle -90" as in ad_tears) and the
vector parsing code would continue past the end of the string and
writing into unowned memory, potentially messing up the libc allocation
records. Replacing with the obvious sscanf works nicely.
Sometimes, Quake code is brilliant. Other times, it's a real face-palm.
GCC does a nice enough job compiling the more readable form (though
admittedly, hadd is possibly more readable than what's there for
dot[fd], hadd is supposedly slower than the shuffles and adds, and qfvis
seems to support that).
This fixes the annoying persistence of inputs when respawning and
changing levels. Axis input clearing is hooked up but does nothing as of
yet. Active device input clearing has always been hooked up, but also
does nothing in the evdev and x11 drivers.
It was added only because FitzQuake used it in its pre-bsp2 large-map
support. That support has been hidden in bspfile.c for some time now.
This doesn't gain much other than having one less type to worry about.
Well tested on Conflagrant Rodent (the map that caused the need for
mclipnode_t in the first place).
This was one of the biggest reasons I had trouble understanding the bsp
display list code, but it turns out it was for dealing with GLES's
16-bit limit on vertex indices. Since vulkan uses 32-bit indices,
there's no need for the extra layer of indirection. I'm pretty sure it
was that lack of understanding that prevented me from removing it when I
first converted the glsl bsp code to vulkan (ie, that 16-bit indices
were the only reason for elements_t).
It's hard to tell whether the change makes much difference to
performance, though it seems it might (noisy stats even over 50 timedemo
loops) and the better data localization indicate it should at least be
just as good if not better. However, the reason for the change is
simplifying the data structures so I can make bsp rendering thread-safe
in preparation for rendering shadow maps.
And maybe a nano-optimization. Switching from (~side + 1) to (-side)
seems to give glsl a very tiny speed boost, but certainly doesn't hurt.
Looking at some assembly output for the three cases, the two hacks seem
to generate the same code as each other, but 3 instructions vs 6 for ?:.
While ?: is more generically robust, the hacks are tuned for the
knowledge side is either 0 or 1. The later xor might alter things, but
at least I now know that the hack (either version) is worthwhile.
This is a particularly ancient bug, sort of introduced by rhamph when he
optimized temp entity model handling and later exacerbated by me.
However, I suspect the actual problem is limited to nq as qw's gamedir
handling would have caused the models to be reloaded, but nq doesn't
ever change game directories once running.
With experience, I have found that trying to continue after a validation
error tends to result in a segfault or some other nastiness, and
Sys_Shutdown (and the full shutdown sequence) is triggered for any error
signal (segfault, abort, etc) so just exit(1).
Although the skin pointer was being advanced after recording the
information in for the batch array, it was being reset the next time
around the loop (due to a mistranslation of the previous code). This
fixes the segfault while loading (gl, glsl, vulkan) or rendering (sw)
the sphere model from Rogue.
Some very much needed comments :P Still, nicely, I now have a much
better understanding of how the display lists are created (10 years
is a long time to remember how intricate code works (I do remember
fighting to get it working back then))
This makes it much easier to see just what is being done to build a
polygon to be passed to the GPU, and it served as a test for the
lightmap st changes since Vulkan currently never used them.
Many modders use negative lights for interesting effects, but vulkan
doesn't like the result of a negative int treated as unsigned when it
comes to texture sizes.