It "works" for lines, triangles and tetrahedrons. For lines and triangles,
it gives the barycentric coordinates of the perpendicular projection of the
point onto to features. Only tetrahedrons are guaranteed to reproduce the
original point.
Getting everything right with an enum proved to be too difficult if not
impossible. Also use better tests for equivalence and intersection.
Many more tests have been added. All pass :)
And the tests really exercised VectorShear (first attempt had things
messed up when more than one shear value was non-zero). Also,
Mat4Decompose wasn't orthogonalizing the z axis row. Oops. Anyway,
Mat4Decompose is now known to work well, and the usage of its output is
understood :)
I got the idea from blender when I discovered by accident that quat * vect
produces the same result as quat * qvect * quat* and looked up the code to
check what was going on. While matrix/vector multiplication still beats the
pants off quaternion/vector multiplication, QuatMultVec is a slight
optimization over quat * qvect * quat* (17+,24* vs 24+,32*, plus no need to
to generate quat*).
Buffer underflow and though strcpy has always been safe there, change to
memmove. Had the added benefit of helping me create more test cases for
better coverage.