I guess I'd wanted to avoid supporting automatic types in type
functions, but that broke long and unsigned int: either no type, or just
int, depending on the decl style.
Unfortunately, it turns out that generic functions are over-grouped so
all functions with the same name get the last definition, so `mix` with
a float (which should get GLSLstd450FMix) gets the bool version instead
(SpvOpSelect).
When the number of supplied vectors matches the number of columns in the
matrix and all vectors have the same width as the number of rows in the
matrix, there's no need to expand the vectors into components only to be
gathered again.
SPIR-V requires that matrices are constructed from vectors rather than
individual components. While not optimal, iqm.vert's output now passes
spirv-val. Also probably still lots wrong with fine details.
I think I need to come up with a better way of defining glsl builtins
and the strings are rather ugly (and I don't want to use qfcc system
header files).
iqm.vert now compiles, but doesn't pass validation yet (matrix bugs).
And, nicely, simplify it quite a bit. I'm not sure why I didn't thinkg
of this approach before. While the ruamoko back-end doesn't support
matrices yet, the expressions are handled.
As a side effect, type checking on comparisons is "stricter" in that
more potentially bogus comparisons (eg, int-float) are caught, resulting
in a few warnings in ruamoko code and even finding a couple of bugs.
Using bit masks for valid source types for each destination type makes
the logic a lot easier to read. Still had to have some explicit checks
for enums and bools.
The code gen return statements checks for out/inout parameters in the
current function and thus could result in some undesired behavior when
constants are evaluated within such a function.
I found a need to check for shifts separately (not sure it's the right
approach for that problem, though), and there are a few more math ops
than just +-*/.
I'm not sure what it's useful for, but GLSL has a function for it thus I
decided to add the instruction to the VM, so this is part of the
compiler side.
The tricky bit was figuring out how to get `floor()` out of the
available instructions. It's handy that the comparison ops always
returned floats and didn't force the use of branches.
Now both width and columns must match for an instruction to be selected.
Found a few errors in my opcode specs, and some minor goofs in the type
system (really just overthinking things when I added matrices).
Implemented via specific overloads of the function.
It's not quite working correctly in that parameter names are taken from
the declaration instead of definition. However, this seems to be an old
bug that went unnoticed due to me almost always using the same parameter
names in declaration and definition.
Also, the code in get_function() is a horrible mess.
However, the basic idea turned out to be simpler than I though (though
details of the implementation are indeed a little trickier): generic
functions are essentially prototype generators when implemented using
non-generic specialized overloads.
Yet another step closer to glsl support.
While it wasn't correct anyway (neither vectors nor quaternions are
colors), the additional names broke q.s in the quaternion.r test, likely
due to there being two s fields.
For now, it's just recording that type type has attributes (encoding
begins with %) and resurrecting types_same which is used only when
matching with types with attributes, so there's still a fair bit of work
to do.
I'm not sure why I made those functions take const type_t *, but they
didn't need it. There's still a relevant fixime in find_handle, but I
haven't decided how to fix that one just yet.
I'm sure there are still some warts, but interface declaration now works
for spir-v and a real vertex shader can be compiled (albeit one that
doesn't use matrices).
Arrays done via the field code since they use the same opcode and logic.
For now swizzles are just swizzles and don't support zeroing or negating
(but doing one or the other (not both) should be easy).
This was a nasty one to find as it was the unary expression rewrite that
triggered the bug (by causing tighter if tests to be generated, which
surprised me: I wasn't even trying for better if tests). I'm actually
not sure why things worked at all, but this fixes the crashes and other
weird behavior resulting from calls to performSelector.
Two tests are included because I found a separate bug (not fixed yet,
tested by calluse2) while getting the calluse test working.
It returns the number of elements in a type (so something like `countof`
(hopefully that's what the up-coming C feature will be called) can be
implemented), but it applies to structs, vectors, etc (eg, 9 for mat3).
Explicitly typed compound initializers are what C uses and allows them
to initialized `auto` vars and even pass through `...`. Not tested yet
other than ensuring existing tests didn't break.
While storing the scope in a block was the right idea, the
implementation wasn't quite right as it resulted in the current scope
getting set at the wrong times resulting in incorrect symbol access when
shadowing was in effect.
I guess that was a mental FIXME for later, but later came sooner. The
declaration doesn't seem to be working properly, but I'll worry about
that later when I can get some automated tests going.
I'm not sure whether I'll stick with the current encoding, but it turns
out it's necessary to separate function types on parameter qualifiers (I
was half expecting that, though).
Because spir-v's bools are abstract and have no specific size, bool and
lbool need to both have the same spir-v id, as do the vector
counterparts, so when one gets emitted, the id is copied to the mirror
type.
Since spir-v needs actual bools for its conditional instructions, the
time to do bool properly finally came. As expected, the changes caused
quite a mess, but Ruamoko now does bool/true/false.
The tags might have other uses thus the generic term, but this allows
spir-v variables to be declared with the correct pointer storage
classes. Now spirv-val is complaining about my interfaces, so progress :)
Non-const params use references and so need somewhere to store the
arguments. Local variables could be passed directly (parameters normally
require function storage class, which local variables are), but that's a
potential optimization for later.
This required adding a `var` symbol type. For now, it holds just the
storage class, but it might be good for the initializer, too.
Also, clean up some pointer/reference inconsistencies.
As I suspected, the dereference was premature, although it can act as an
optimization when multiple fields of an object are accessed, though it
won't work for writes to lvalues (which means my fixes for spir-v
code-gen currently don't work for lvalue writes). Still, progress. Need
to get field member ids set.
It turns out my field access processing works well enough for vectors.
I'm not sure about pointer access as I may have done the pointer
dereference prematurely.