This fixes the ICE when attempting to compile address-cast without
optimization (just realized why, too: the assignment was optimized out
of existence).
This the fixes the incorrect flow analysis caused by the def being seen
to have the wrong size (structure field of structure def seen through a
constant pointer). Fixes the ICE, but the pointer constant is broken
somewhere in dags, presumably.
This fixes the problem of using nil for two different compound types
within the one expression. The problem is all compound types have the
same low-level type (ev_invalid) and this caused the two different nils
to have the same type when taken back up to expression level.
While expression symbols worked for what they are, they weren't so good
for ivar access because every ivar of a class (and its super classes)
would be accessed at method scope creation, generating spurious access
errors if any were private. That is, when the access checks worked at
all.
The end goal was to fix erroneous non-constant initializer errors for
the following (ie, nested initializer blocks):
typedef struct { int x; int y; } Point;
typedef struct { int width; int height; } Extent;
typedef struct Rect_s { Point offset; Extent extent; } Rect;
Rect makeRect (int xpos, int ypos, int xlen, int ylen)
{
Rect rect = {{xpos, ypos}, {xlen, ylen}};
return rect;
}
However, it turned out that nested initializer blocks for local
variables did not work at all in that the relocations were lost because
fake defs were being created for the generated instructions.
Thus, instead of creating fake defs, simply record the offset relative
to the base def, the type, and the basic type initializer expression,
then generate instructions that all refer to the correct def but with a
relative offset.
Other than using the new element system, static initializers are largely
unaffected.
This is for adding methods to classes and protocols via their interface,
not for adding methods by adding protocols (they still get copied).
Slightly more memory efficient.
Copying methods is done when adding protocols to classes (the current
use for adding regular methods is an incorrect solution to a different
problem). However, when a method is added to a class, the type of its
self parameter is set to be a pointer to the class. Thus, not only does
the method need to be copied, the self parameter does too, otherwise
the self parameter of methods added via protocols will have their type
set to be a pointer to the last class seen adding the protocol.
That is, if, while compiling the implementation for class A, but the
interface for class B is comes after the interface for class A, and both
A and B add protocol P, then all methods in protocol P will have self
pointing to B rather than A.
@protocol P
-method;
@end
@interface A <P>
@end
@interface B <P>
@end
@implementation A
-method {} // self is B, not A!
@end
Duplicate methods in an interface (especially across protocols and
between protocols and the interface) are both harmless and even to be
expected. They certainly should not cause the compiler to demand
duplicate method implementations :)
This is actually a double issue: when a class implementing a protocol
used the protocol in @protocol(), not only would the protocol get
emitted as part of the class data specifying that the class conforms to
the protocol, a second instance would be emitted again when @protocol()
was used. On top of that, only the instance referenced by @protocol()
would be initialized. Now, both class emission and @protocol() get their
protocol def from the same place and thus only one, properly
initialized, protocol instance is emitted.
The problem was an erroneous assumption that the methods had to be
defined. Any class implementing a protocol must implement (and thus
define) the methods, but a protocol declaration cannot: it merely
declares the methods, and it's entirely possible for a module to see
only the protocol definition and not any classes implementing the
protocol.
Unlike gcc, qfcc requires foo to be defined, not just declared (I
suspect this is a bug in gcc, or even the ObjC spec), because allowing
forward declarations causes an empty (no methods) protocol to be
emitted, and then when the protocol is actually defined, one with
methods, resulting in two different versions of the same protocol, which
comments in the gnu objc runtime specifically state is a problem but is
not checked because it "never happens in practice" (found while
investigating gcc's behavior with @protocol and just what some of the
comments about static instance lists meant).
It proved to be too fragile in its current implementation. It broke
pointers to incomplete structs and switch enum checking, and getting it
to work for other things was overly invasive. I still want the encoding,
but need to come up with something more robust.a
This fixes the dependency issues between qwaq and ruamoko. qwaq is
actually older than ruamoko. That little language feature test has come
a long way.
However, I'm considering moving to non-recursive make, but...
It doesn't look good, but it does have panel based windows working, and
using objects. Won't build reliably right now due to qwaq being in tools
and thus building before ruamoko, but I'll fix that next.
It seems that xterm automatically disables it when ncurses shuts down and
mate-terminal does not, or maybe a different version of something. Still,
good to clean up properly.
Now they reflect the curses functions they wrap. The externally visible
builtin names are not changed because the parameters are in x, y order
rather than curses' y, x order.
If the window is invalid and recovery is done, string ids will leak if
acquired before validation.
Afterwards, make the rest of the builtin wrappers consistent: extract
parameters, validate, [acquire resources], generate command.
Now that the initial prototype seems to be working well, it's time to
implement more commands. I might have to do some wrappers for actual
command writing (and result reading) as it looks like there will be a
lot of nearly identical code.
So far, no threading has been set up, and only window creation and
printing have been updated, but the basics of the design seem to be
sound.
The builtin functions now no longer call ncurses directly: the build
commands and write them to a command buffer.
Commands that have return values (eg, window creation) write their
results to a results buffer that the originating builtin function
reads. Builtin functions that expect a result "poll" the results buffer
for the correct result (marked by the same command). In a single
UI-thread environment, the results should always be in the same order as
the commands, and in a multi-UI-thread environment, things should
(fingers crossed) sort themselves out as ONE of the threads will be the
originator of the next available result.
Strings in commands (eg, for printing) are handled by acquiring a string
id (index into an array of dstring_t) and including the string id in the
written command. The string id is released upon completion of the
command.
Builtin functions write commands, acquire string ids, and read results.
The command processor reads commands, releases string ids, and writes
results.
Since commands, string ids, and results are all in ring buffers, and
assuming there is only one thread running the builtin functions and only
one thread processing commands (there can be only one because ncurses is
not thread-safe), then there should never be any contention on the
buffers. Of course, if there are multiple threads running the builtin
functions, then locking will be required on the builtin function side.
I expect I will need several messaging buffers, and ring buffers tend to
be quite robust. Replacing the event buffer code with the macros made
testing easy.
id and z seem to always be 0.
Ironically, it turns out that the work needed for "int id" and "large"
struct nil init wasn't strictly necessary to get to this point, but
without having done that work, I wouldn't know :)
Such declarations were being lost, thus in the following, the id field
never got added:
typedef struct qwaq_mevent_s {
int id;
int x, y, z;
int buttons;
} qwaq_mevent_t;
typedef is meant to create a simple renaming of a potentially complex
type, not create a new type. Keeping the parameter type alias info makes
the types effectively different when it comes to overloaded function
resolution, which is quite contrary to the goal. Does expose some
breakage elsewhere, though.
For technical reasons (programmer laziness), qfcc does not fix up local
def type encodings when writing the debug symbols file (type encoding
location not readily accessible).
The debug subsystem now uses the resources system to ensure it cleans
up, and its data is now semi-private. Unfortunately, PR_LoadDebug had to
remain public for qfprogs because using PR_RunLoadFuncs would cause
builtin resolution to complain.
It is now set to 0 when progs are loaded and every time
PR_ExecuteProgram() returns. This takes care of the default case, but
when setting parameters, pr_argc needs to be set correctly in case a
vararg function is called.
Attempting to define a variable with an incomplete type is an error, and
results in a default size 1 of allocated, but I forgot to set default
alignment when implementing alignment.
The addition of xdef data has made qfo_to_progs unusable in qfprogs,
resulting in various invalid memory accesses. It always was an ugly hack
anyway, so this is the first step to proper qfo support in qfprogs.
I was originally going to put it in the debug syms file, but I realized
that the data persistence code would need access to both def type and
certainly correct def offsets for defs in far data.
This far better reflects the actual meaning. It is very likely that
ty_none is a holdover from long before there was full type encoding and
it meant that the union in qfcc's type_t had no data. This is still
true for basic types, but only if not a function, field or pointer type.
If the type was function, field or pointer, it was not true, so it was
misnamed pretty much from the start.
It was long wrong anyway as it checked past the end of the function's
parameters, which caused a segfault when calling varargs functions with
no formal parameters.
The encoding is 3:5 giving 3 bits for alignment (log2) and 5 bits for
size, with alignment in the 3 most significant bits. This keeps the
format backwards compatible as until doubles were added, all types were
aligned to 1 word which gets encoded as 0, and the size is unaffected.
This fixed the uninitialized temp warning in HUD.r. The problem was
caused by the flow analyzer not being able to detect that the struct
temp was being initialized by the move statement due to the address of
the temp being in a pointer temp. While it would be good to use a
constant pointer for the address of the struct temp or improving the
flow analyzer to track actual data, avoiding the temp in the first place
results in nicer code as it removes a move statement.
With this, cast address initializers work. I have to wonder if the alias
value short-circuit was legacy from long before the rewrite, as it was
quite trivial to handle in the back-end.
All functions are stored in the overload functions table, even those
that are never explicitly overloaded, but only explicitly overloaded
functions (those with @overload) use the type-qualified naming.
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.
I plan on adding doubles, and so it's necessary to ensure that attempts
to align doubles in local or far data spaces remain aligned after final
linking.
I added Sys_RegisterShutdown years ago and never really did anything
with it: now any system that needs to be shutdown can ensure it gets
shutdown on program exit, and in the correct order (ie, reverse to init
order).
In order to keep enumerator type and enum type the same, the values need
to have their type set after the enum type is finalized, and then the
appropriate symbols created in the parent scope. This fixes the infinite
recursion when assigning an enum value to its own type.
It turns out the enumerator type and enum type wind up with different
instances of the same type (due to the way type chaining works). This
results in infinite recursion in assign_expr and check_types_compatible.
This is where constant folding should have happened all along. While
unary_expr should fold constants too, it seems to already try to do so
and it's a bit much of a mess to clean up right now.
This is for modern code. Traditional code still treats initialized
globals as constant and nosave. This will make a bit of a mess of
modern code that expects traditional behavior.
While this does break automatic type promotion, it does stop
fold_constants recursing through complex expressions: only the top level
expression needs to be folded, and then only if both sides are actually
constant.
Not sure just what version of automake broke things, but I do remember
having a bad time getting the dependencies to work in the first place.
At least now they should be more reliable (until automake changes
things).
I don't remember what the goal was (stopped working on it eight months
ago), but some possibilities include:
- better handling of nil (have trouble with assigning into struts)
- automatic forward declarations ala C# and jai (I was watching vids
about jai at the time)
- something for pascal
- simply that the default symbol type should not be var (in which case,
goal accomplished)
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).
I've decided that setting pr.max_edicts and pr.zone_size as part of the
local progs initialization rather than in PR_LoadProgsFile makes more
sense. For one, it is unlikely for the limits to change every time progs is
reloaded. Also, they seem to be a property of the VM rather than the progs.
However, there is nothing stopping the caller from updating max_edicts and
zone_size every call.
It seems gcc doesn't care if the & is present when calculating field
offsets, but it not being there bothered me very much and might as well use
our "standard" macro anyway.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).
If the kahan triangle area method breaks, I did something wrong with qfcc's
handling of parentheses (ie, floating point math is not truly associative).
This fixes a segfault when optimizing the empty-body test. The label was
getting moved, but the statement block to which it pointed was not updated
and thus it pointed to dead data.
It returns the rest of the line (minus // style comments) as the token. I
needed it in another project but this is my central repository for
script.py.
Saw a discussion of such in #qc and that gcc implemented it. I realized it
would be pretty easy to detect and very useful (I've made such mistakes at
times).
It is now in its own file and uses table lookups to check for valid type
and operator combinations, and also the resulting type of the expression.
This probably breaks multiple function calls in the one expression.
This is a bit of a workaround to ensure the operands have their types
setup correctly. Really, binary_expr needs to handle expression types
properly.
This fixes the bogus error for comparing the result of pointer subtraction
with an integer.
Currently, they can represent either vectors or quaternions, and the
quaternions can be in either [s, v] form or [w, x, y, z] form.
Many things will not actual work yet as the vector expression needs to be
converted into the appropriate form for assigning the elements to the
components of the "vector" type.
It's sometimes more useful to have direct access to each individual
component of the imaginary part of the quaternion, and then for
consistency, alias w and s.
This is a nice feature found in fteqcc (also a bit of a challenge from
Spike). Getting bison to accept the new expression required rewriting the
state expression grammar, so this is mostly for the state expression. A
test to ensure the state expression doesn't break is included.
I think it may have been for compatibility with a certain qcc variant (no
idea which one, though). While the shift/reduce conflict is fixable using
"%prec IFX" on the const:string rule, the colon breaks test?"a":"b".
Putting parentheses around "a" allows such a construct, requiring them
breaks comatibility with C. I think this feature just isn't worth that.
This goes towards complementing the "if not" logic extension. I need to
check if fteqcc supports "not" with "while" (the version I have access to
at the moment does not), and also whether it would be good to support
"not" with "for", and if so, what form the syntax should take.
It is syntactic sugar for if (!(foo)), but is useful for avoiding
inconsistencies between such things as if (string) and if (!string), even
though qcc can't parse if not (string). It also makes for easier to read
code when the logic in the condition is complex.
It turns out this is required for compatibility with qcc (and C, really).
Once string to boolean conversions are sorted out completely (not that
simple as qcc is inconsistent with if (string) vs if (!string)), Qgets can
be implemented :)
It looks like I had forgotten that the compare function is supposed to
return true/false (unlike memcmp's sorting ability). Also, avoid the
pointers in the value struct as they can change without notice.
Using enums in switches now works nicely, including warnings for unused
enum values.
Either I had gotten confused while writing the code and mixed up line and
offset, or I had changed offset to line at one stage but missed a place.
This fixes the segfault when compiling chewed-alias.r and return-ivar.r
For the most part, it's just refactoring the code so the plane creation and
testing are in separate functions, but there is one important difference:
the plane test now checks only the two points on either side of the point
used to create the plane.
Because the portal winding is guaranteed to be convex and planar, if both
points are on the plane, all points are, and if neither point is behind the
plane, no points are.a
This shaved about 5 seconds off the level 4 run using 4 threads (~198s to
~193s) and about 12s from the single threaded run (~682s to ~670s (hmm,
gained some time in recent changes)).
qsort is used to sort the queue by nummightsee. At ~4ms for 20k portals, I
think it's affordable. Using a queue rather than scanning the portal list
each time loses the dynamic sorting when mightsee gets updated, but it
seemed to shave off 4s anyway (~207s to ~203s (maybe, yay random times)).
Another step towards threaded base-vis.
This reverts commit 1ea79e8626.
Conflicts:
tools/qfvis/include/vis.h
tools/qfvis/source/flow.c
I've decided to do reentrant versions of the set allocators and I didn't
particularly like the invasiveness of allocating sets this way.
The old variable names were confusing ("target" winding comes from
"portal"?), and the comments were from when I really didn't understand
concepts like separating planes. While they weren't wrong, they were quite
inadequate and I want to write new ones.
This bypasses set_new, but completely removes the use of the global lock
from within RecursiveClusterFlow. This seems to give a small speedup: 203
seconds threaded.
This was testing an idea I had to remove the plane flips. It seems to have
been good for the initial plane orientation, but was a slight slowdown for
the pass-portal test. However, this makes the code a little easier to work
with for my idea on improving the algorithm itself.
Since the stack structure in the thread data is a linked list, move the
stack blocks off the program stack and into malloced memory. More
importantly, when the stack block is allocated, the mightsee working set is
allocated too, and as neither are freed, this greatly reduces contention
for the lock. Also, because the memory is kept, single threaded time for
gmsp3v2 dropped from 695s to 670s. Threaded is now about 207s (down from
350).
While using set operators was clearer, it was rather expensive (about 25s
for gmsp3v2). qfvis now completes the map in about 695s (single threaded).
About 15s faster than tyr for the same conditions (1 thread, level 4).
This is the second part of the separator search optimization from tyrutils
vis. With this, qfvis is getting close to tyrutils vis when
running single threaded (qfvis is suffering some nasty thread contention
and thus can't get below about 350 seconds with 4 threads). 808s vs 707s.
Interesting, it makes very little (maybe faster) difference to find all the
separators for levels 3 and 4. This might be due to the higher levels using
most of the planes to fully clip source away. Anyway, it makes the code a
little clearer (one function, one task).
I had forgotten to skip the refined tests when the sphere was entirely on
the relevant side of the plane. Now BasePortalVis for gmsp3v2 takes 11s on
my machine (it was 13 with the previous optimization and 15.9 before that).
Also, write some comments describing how BasePortalVis works.
Representing the side of the plane on which the sphere lies is much more
useful as more complicated tests can be done using just the one call.
-1: the sphere is entirely on the back side of the plane
0: the sphere is intersecting the plane
1: the sphere is entirely on the front side of the plane
It was supposed to be 2, but for some reason I neglected to set it when I
set up the options parsing. However, level 4 is the standard for production
maps, and it happens to be faster than level 2 (at least for gmsp3v2.bsp)
I think the reason I didn't think of that when I tried to improve qfvis's
performance many years ago is I just simply did not understand
ClipToSeparators. However, the difference caching the separators makes is
phenomenal. Before the change, single threaded qfvis would get stuck on one
particular portal for at least a day (I gave up waiting), but now even a
debug build will complete gmsp3v2.bsp in less than 12 minutes (4 threads on
my quad-core). And that's at level 2! Getting stuck for a day was at level
0.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
While noticeably slower than the previous expanded set manipulation code,
this is much easier to read. I can worry about optimizing the set code when
I get qfvis behaving better.
I'd forgotten that ED_ConvertToPlist mangled light into light_lev and
single component angle values into a vector. This fixes much of the
breakage in qflight (but not the light levels)
This removes a lot of redundant code from qflight (though it does become
dependent of libQFgamecode *shrug*). The nice thing is qflight now uses the
exact same code to load entities as does the server.
Something is funny with Ubuntu such that -ldl needs to be specifically
added even though QFutil's .la specifies it. I don't know if it's a libtool
issue or not, but this does work.
More will probably be necessary, but this was sufficient to get prover to
the point where qfcc segged building qwaq (0.7.2).
type_obj_class is no longer a class, so its ivars are not stored in
type_obj_class.t.class->ivars but rather type_obj_class.t.symtab.
This fixes the segfault Spirit and Randy were experiencing.
In passing, correct the unneeded emission of meta class ivars for non-root
classes. This should make for much smaller progs that use classes.
MOVEP's opc itself is always known and used, whether it's a constant
pointer or variable doesn't matter. This fixes the lost pointer calculation
for va_list.list[j] = object_from_plist (item);
Dead nodes are those that generate unused values (unassigned leaf nodes,
expressions or destinationless move(p) nodes). The revoval is done by the
flow analysis code (via the dags code) so that any pre and post removal
flow analysis and manipulation may be done (eg, available expressions).
assign_expr mangles the destination expression for dereferenced
assignments into something that is invalid as an lvalue, so simply use
new_binary_expr with the same opcode.
It turns out expression trees are (mostly?) valid DAGs, so all edges being
constrained works, though the graphs get a little tall (but easier to read).
This fixes the infinite loop in if ((x = self.heat && x))
Really, I think I need to revisit the whole expression tree code. It's
proving to be rather fragile.
The source of the assignment is used as the value to test, and the
assignment itself is inserted into the boolean expressions's block. This
fixes the inernal error for "if ((x = 0))".
Normally, it will happen only as a follow-on error, but I can think of a
way to force it without other errors, so treating it as an internal error
is a bit harsh.
But reset current_symtab to its prior value when done. This fixes a
segfault caused by initializing the class system while parsing a struct
(eg, one of the members is of type id).
The keywords table was rather awkward to edit (and sometimes confusing).
Worse, because the hash table used to look up the keywords was initialized
only once, changing modes in the same execution of qfcc would not work
properly as keywords would not be added or removed as appropriate.
Now there are four categories of keywords:
o "core" Always available. They form the core of QuakeC except for two
extensions.
o "@" In extended and advanced modes, the preceeding @ is optional,
but tranditional mode requires the keywords to be preceeded by
an @. They are the C keywords that QuakeC did not use, but can
be implemented in v6 progs under certain circumstances.
o "QF" These keywords require the QuakeForge VM to be usable.
o "Obj" These keywords form Ruamoko/Objective-QuakeC and require both
advanced mode and the QuakeForge VM.
This fixes the segfault/null pointer access in sendv.r. While I wanted to
use the edge setting code to set the live bit, I didn't expect it to be
this easy. def_visit_all is proving to be worth every bit it consumes :)
It seems dag_set_live_vars still served a purpose after all, but I don't
feel like bringing it as I'd rather implement its param handing in
dagnode_set_edges. I've now got a test case for it, though the test
currently causes the VM to segfault (even with pr_boundscheck 2!).
If the final block ends in a conditional statement, appending return to the
block will hide the conditional statement from the flow analyzer. This may
cause the conditional statement's destination node be become unreachable
according to the analyzer and thus eliminated. The label for the branch
then loses its target sblock and thus the code generator will produce a
zero-distance jump resulting in an infinite loop.
Thus, if the final block ends in a conditional statement (or, for
completeness, a call statement), append a new empty block before adding the
return statement.
If MOVEP's destination is variable, then the actual destination isn't (at
this stage) knowable, so it can't be attached to the dagnode and thus must
be a child.
Getting the operands directly from the statement was missing the
destination operand of movep when movep's op_c was a constant pointer and
thus the flowvar wasn't being counted/created early enough. This led to a
segfault in the set code when attempting to add -1 to the set.
It turns out the recent dead-block code "broke" vector component access
from objects. The breakage is really highlighting a problem with temporary
operands and aliasing. The problem was hiding behind a basic-block split
that the recent dead-block work mended and thus exposed the bug.
type_id is implemented as a pointer to "struct obj_object" (ie, not really
a class), so the correct check is to ensure the type is:
1 a pointer
2 to a struct
3 using the same symbol table as type_obj_object
Empty structs are now (correctly) invalid. The hack of using an empty
struct to represent a handle returned from a builtin has been unnecessary
since opaque structs were implemented: now a pointer to an opaque struct
can be used. This is mostly safe as handles are aways negative and thus
attempting to dereference such a pointer should result in a VM error. It
will be even safer once const is implemented and the pointers can be made
constant (eg, typedef struct handle * const handle;)
void foo (int); is fine for a prototype (or, presumably, a qc function
variable), but not for an actual function body. This fixes the segmentation
fault when the parameter name is omitted.
This is needed to allow compile-time protocol conformance checks, though
nothing along those lines has been implemented yet.
id has been changed from TYPE to OBJECT, required to allow id <proto> to be
parsed. OBJECT uses symbol, allowing id to be redefined once suitable work
has been done on the parser.
It uses the new block merge code. Now forgotten return statements are
detected properly (naive dead block removal) and all unreachable code is
eliminated (flow analysis unreachable node removal).
This reverts commit 83ead0842f.
Note: does not compile.
It turns out basic dead block removal is needed for the "control reaches
end of non-void function" warning to work correctly.
Empty sblocks are removed (unless it's the only sblock), and blocks that
are split unnecessarily are merged.
This mostly fixes bogus "no return" warnings.
Unreachable nodes will cause the first elements of the array to remain
unwritten by df_search. This fixes the segfaults caused by unreachable
nodes (the reason they were an internal error before).
The current implementation probably needs more work, but for the case where
I needed it, it does the job.
grid.r💯 vector size = {range, range, 0};
0115 store.f range, size
0116 store.f range, [$2ac]
0117 store.f .zero, [$2ad]
After all that effort getting the class def initialized early enough for
type encodings to work, it proved to be a problem: just including a header
with an interface in it would cause linker errors if there was no
implementation available (even if the class is never used).
I got MXE to build (took only an envvar and a couple packages, yay doc
reading), so I thought it time to update the scripts to use it (they assume
/opt/mxe).
qfcc now does local common subexpression elimination. It seems to work, but
is optional (default off): use -O to enable. Also, uninitialized variable
detection is finally back :)
The progs engine now has very basic valgrind-like functionality for
checking pointer accesses. Enable with pr_boundscheck 2
Temps aren't supported yet :P
The alias defs themselves aren't killed (still want any assignments to
occur) but rather, their nodes are. Also, edges to the alias defs' nodes
are added to the assigning node. Fixes structlive.r :)
I got fed up with using "int" types, but the members being "integer"
(hold-over from before the int rename).
Also, correct the names of those types and @va_list (error reporting was
chopping off part of the name).
MOVE (static move) and MOVEP to a pointer constant know exactly where their
data is going, so treat them similarly to assignments: save their
distination operands (the addressed def for MOVEP) and mark them as
defined.
The live var flow analysis doesn't check for aliases. Rather than changing
it to check for aliases (which might break uninitialized var analysis, as
it uses "use" from the live var analysis), make dag_remove_dead_vars do the
check. Fixes the misplaced text in the menus.
Nifty: if you pass a struct via reference to a function, and a field of
that struct may be both set and not set (eg, set only in an if statement),
gcc will report that field assuming that fields that are never set will be
set by the function (my interpretation).
* taniwha ponders the flow analysis for that
Nifty: if you pass a struct via reference to a function, and a field of
that struct may be both set and not set (eg, set only in an if statement),
gcc will report that field assuming that fields that are never set will be
set by the function (my interpretation).
* taniwha ponders the flow analysis for that
At the statement level, all pointer types are the same, so just return the
op obtained from the sub-expression when the low-level type of the alias
expression matches the low-level type of the type of type sub-expression
operand.
With this, the alias of a value code can be removed (I always thought it
was wrong), which is what broke calling obj_msgSend_super (type &.super
param lost the &).
Now I have to deal with pointer values in the optimizer :/
When an alais def (or aliased def) is used, any overlapping aliases that
have previously been assigned need to be marked as live, and edges to the
aliases added to the new node. However, when assigned to, live-forcing
needs to be turned off.
This fixes the lost assignments to .super.
This fixes the bogus temps for "*to = *from++;", but qfcc ices due to the
operand types being lost. It seems alias operands need to be resurrected,
if only for code output by dags.
I forgot to add func->num_statements :P. Fixes the weirdness where only
some alias temps were being (bogusly) detected as uninitialized. Now they
all are.
When the naive uninitialized variable detection finds a node with possible
uses of uninitialized variables, the statements in the node are scanned one
at a time checking each usage and removing uninitialized definitions as
appropriate. vectest.r now compiles without warnings. As an added bonus,
accurate line number information is reported for uninitialized variables.
Unfortunately, there is still a problem with uninitialized temps in
switch.r, but that might just be poor handling of temp op aliases.
Only definitions for the def used in the current statement (whether an
alias or not) are suitable for killing. Doing otherwise defeats the purpose
of this work :P
Fixes the false negatives found in a modified quattest.r (commented out the
"tq.s = 0;" line).
Nicely, the use sets from live_variable analysis can be used too, though
there are some problems with the naive implementation. For:
vector foo (float x, float y, float z)
{
vector v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
qfcc thinks v is uninitialized, but if "if (x) return nil;" (or any other
basic-block splitter) is put just before the return v; qfcc correctly
detects that v is initialized. The reason is that the inits are in the same
basic block as the return, and thus aren't affecting the reaching
definitions, which are stored per-block.
The naive implementation should be good for a fast-cull before doing a
per-statement check.
The exit dummy block is setup to provide dummy uses of global variables to
the live variable analysis doesn't miss global variables. Much cleaner than
the previous code :) There may be some issues with aliases, though.
The entry dummy block is setup to provide dummy definitions of local
variables so the reaching definitions analysis can be used to detect
uninitialized variables (not implemented yet). Fake statement numbers
(func->num_statements + X) are used to represent the definitions. Local
variables (ie, not temp ops) use their offsets (ie, the offset range they
cover) for X. Temp ops use their flowvar number + the size of the
function's defspace for X. flow_kill_aliases() should take care of temp op
aliasing, while the use of the actual offsets spanned by the variable's def
should take care of any wild aliasing so structures and unions should
become a non-issue.
The dummy nodes are for detectining uninitialized variables (entry dummy)
and making globals live at function exit (exit dummy). The reaching defs
and live vars code currently seg because neither node has had its sets
initialized.
Fixed aliases are those that will never change through the life of the
code. They are generated from structure accesses and thus what they alias
is always known.
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).
Set of everything is implemented by inverting the meaning of bits in the
bitmap: 1 becomes non-member, 0 member. This means that set_size and
set_first/set_next become inverted and represent non-members as counting
members becomes impossible :)
Aliasing the jump table to an integer broke statement_get_targetlist with
the new alias def handling, and was really wrong anyway. I probably did
that due to being fed up with things and wanting to get qfcc working again
rather than spending time getting jumpb right.
With the need to handle aliasing in the optimizer, it has become apparent
that having the flow data attached to symbols is not nearly as useful as
having it attached to defs (which are views of the actual variables).
This also involves a bit of a cleanup of operand types: op_pointer and
op_alias are gone (this seems to greatly simplify the optimizer)
There is a bit of a problem with enums in switch statements, but this might
actually be a sign that something is not quite right in the switch code
(other than enums not being recognized as ints for jump table
optimization).
Turns out there was only one place to fix (for qc, anyway: I don't have
tests for qp yet). func-static now passes :)
Hmm, how to test for static var naming... (not implemented yet)
Simply "backed" and "virutal". Backed spaces have memory allocated to them
while virtual spaces do not. Virtual spaces are intended for local
variables and entity fields.
It turns out they're not getting allocated properly (they're put in the
function's locals defspace rather than near data), but fixing it proved a
little more problematic than expected, so the test is marked as XFAIL for
now to remind me to fix it.
With this, alias defs become singletons based on the def they alias and the
type and offset of the alias. Thus, the removal of the free_def call in
emit.c.
alias_def now always creates an offset def (though the usual case has an
offset of 0). The if the alias escapes the bounds of the base def, an
internal error will be generated.
It really doesn't seem wise to allow the compiler to do so as it would
overwrite unrelated defs. The only time such a thing is valid is the return
statement (silly vm design), and that's read-only.
Also remove the extern for current_storage as it belongs in shared.h.
I'm not satisfied with the documentation for initialize_def, but it will do
for now. I probably have to rewrite the thing as it's a bit of a beast.
With the intoduction of the statement type enum came a prefix clash. As
"st" makes sense for "statement type", I decided that "storage class"
should be "sc". Although there haven't been any problems as of yet, I
decided it would be a good idea to clean up the clash now. It also helps
avoid confusion (I was a bit surprised after working with st_assign etc to
be reminded of st_extern etc).
qfcc isn't meant to be long running, so I'm not super worried about memory
usage, but definitely lost memory blocks when compiling just a single
function seems a tad sloppy.
It doesn't quite work yet, but...
It has proven necessary to know what type .return has at any point in the
function. The segfault in ctf is caused by the return statement added to
the end of the void function messing with the expr pointer stored in the
daglabel for .return. While this is actually by design (though the
statement really should have a valid expr pointer rather than), it actually
highlights a bigger problem: there's no stable knowledge of the current
type of .return. This is not a problem in expression statements as the
dagnodes for expression statements store the desired types of all operands.
However, when assigning from .return to attached variables in a leaf node,
the type of .return is not stored anywhere but the expression last
accessing .return.
Now information like dags or live variables are dumped separately, and the
live variable information replaces the flow node in the diagram (like dags
have recently).
They really should have been in statements.[ch] in the first place
(actually, they sort of were: is_goto etc, so some redundant code has been
removed, too).
Native versions of qfcc and pak are now built automatically, and the
android toolchain now defaults to a more sensible place. Also, the separate
pkg-config replacement is no longer necessary.
Modifying the existing alias chain proved to be a bad idea (in retrospect,
I should have known better:P). Instead, just walk down any existing alias
chain to the root operand and build a new alias from that.
These are based on the ps3dev scripts, so native qfcc and pak are built
automatically.
Note that there may be a need to replace or even just nuke bison in the
toolchain as it is too old and can't build qfcc.
The goto for the default expression is the source of the mis-counted label
users: the label was being counted by the goto, but the goto was never
being inserted into the code (only v6 progs or "difficult" types insert the
goto).
Such nodes are unreachable code (ie, dead blocks), but the dead block
removal code failed to remove them (current known cause: miscounted label
userrs). As such blocks cause problems for data flow analysis, ignoring
them is not a good idea. Thus make them an internal error.
vectors, quaternions and structs are a little tricky. I need to think about
how to get them working, but I also want qfcc to get through as much code
as possible.
The evil comment is not just "pragmas are bad, ok?", but switching between
advanced, extended and tradtitional modes when compiling truly is evil and
not guaranteed to work. However, I needed it to make building test cases
easier (it's mostly ok to go from advanced to extended or tradtional, but
going the other way will probably cause all sorts of fun).
In the process, opcode_init now copies the opcode table data rather than
modifying it.
After running across a question about lists of animation frames and states,
I decided giving qfcc the ability to generate such lists might be a nice
distraction from the optimizer :) Works for both progs.src and separate
compilation. No frame file is generated if no macros have been created.
It really should be impossible, but I'm not sure where the bug is yet
(though there are uninitialized variables that are false positives that
most definitely are initialized, might be related)
Pointing to aliases of the var causes all sorts of problems, but this time
it was causing the uninitialized variable detector to miss certain
parameters.
It is necessary to know if a def is a function parameter so it can be
treated as initialized by the flow analyzer. The support for the flag in
object files is, at this stage, purely for debugging purposes.
The structvar2 = structvar1 is implemented as a move expresion, which
address_expr didn't like. Return the address of the source. For indirect
move expressions, this is just the source expression itself.
Constant/label nodes should never be killed because they can (in theory)
never change. While constants /can/ change in the Quake VM, it's not worth
worrying about as there would be much more important things to worry about
(like 2+2 not giving 4).
Due to the hoops one would have to jump through, it is assumed that a
pointer or an offset from that pointer will never overwrite the pointer.
Having the source operand of a pointer assignment available to later
instrctions can make for more efficient code as the value does not need to
be dereferenced later. For this purpose, pointer dereference dag nodes now
store the source operand as their value, and dagnode_match will match x=a.b
with *(a+b)=y so long as both a and b are the same in both nodes. x and y
are irrelevant to the match. The resulting code will be the equivalent of:
*(a+b) = y;
x = y;