It turns out they're not needed as the difficulty of quakec function
declarations (function fields) is taken care of by qc_function_spec.
Also, they made it difficult to think about function declarations.
While they might be ok, I expect them to cause some issues when doing
compile-time evaluations of type expressions, so use of dags seems to be
a premature optimization. However, as the "no dags" flag is propagated
to parent expression nodes, it may prove useful in other contexts.
The expression grammar has been tidied up and some basic checks are made
of parameters to the type functions. Also, type parameters are looked up
so parsing now works properly. However, the type parameters are not used
correctly, so function generation doesn't work.
The semantics are only partially implemented (generic types not yet
generated), but the generic scope for function declarations seems to be
working as intended in that it gets inserted in the scope chain and
removed at the end of the declaration.
The end goal is to allow generic and/or template functions, but this
allows types to be specified parametrically, eg vectors of specific type
and width, with widths of one becoming scalars.
Matrices are currently completely broken as I haven't decided on how to
represent the columns (rows is represented by width (column-major
storage)), and bools are only partially supported (need to sort out
32-bit vs 64-bit bools).
No semantics yet, but qfcc can parse some of QF's shaders. The grammar
mostly follows that in the OpenGL Shading Language, Version 4.60.7 spec,
but with a few less tokens.
While it currently doesn't have any effect on generated code, it proved
to be necessary when experimenting with optimizing the operand of extend
expressions (which proved to produce worse code).
Along with some 0 -> nullptr changes.
The change to not split basic blocks on function calls resulted in the
@return def not being live and thus getting dropped when optimizing.
Marking the def as not local forces flow and dags to treat it as global
and thus forced it to be live.
This gets the types such that either there is only one definition, or C
sees the same name for what is essentially the same type despite there
being multiple local definitions.
I need upstream flex for its line handling and nicer interface, but
debian's flex is ancient and stuck with the legacy interface, and I want
QF to be buildable on at least sid.
The syntax is not at all correct at this stage (really, just a copy of
Ruamoko), but the keyword table exists (in the wrong place) and the
additional basic types (bool, bvecN and (d)matNxM) have been added.
Boolean base type is currently just int, and matrices have 0 width while
I think about what to use, but finally some progress after several
months' hiatus.
It's disabled by default because it's a runtime thing and I'm not sure I
want to keep it enabled, but it did find some issues (which I've cleaned
up), although it didn't find the problem I was looking for :P
This allows the dags code to optimize the return values, and when I make
the node killing by function calls less aggressive, should make for many
more potential CSE optimizations.
Offset casts are used heavily in geometric algebra, but doing an offset
cast on a dereferenced pointer (array index) doesn't work well for
assignments. Fixes yet another bug in my test scene :)
This takes care of ptrmove instructions, fixing the printf problem in
ptrstructinit. It might even make it possible to not break basic blocks
on function calls, which should make for some more optimization
opportunities, but that can come later.
For this to work properly, it was necessary to avoid converting alias
defs to st_alias nodes.
It also fixes ptrstructinit itself (at first, I hadn't noticed that the
test passed entirely).
It turns out the bug I was chasing in set_poses was not the data getting
lost or incorrect data being read, but the arguments to printf being set
from the parent pose `p` before `p` had actually been set.
This gets rid of the funny little self-loop edge in dags dot files that
has bothered me for a while. It was just because the node to which an
identifier was attached happened to be the parent of the identifier's
leaf node.
The fix in bdafdad0d5 for
`while (count--)` never did appeal to me. I think I understood the core
problem at the time, but I hadn't figured out how to use a var's
use/define sets to detect the write-before-read. Using them allows the
special handling for flow control to be removed, making things more
robust. The function call handling has been superfluous since the
Ruamoko instruction set required the auxiliary operands on the call
statements.
Not by much really, but using one "aux" count instead of different
types, and using functions to iterate through the statement's aux
operands makes the code easier to read.
Two birds with one stone: eliminates most of the problems with going
const-correct with expr_t, and it make dealing with internally generated
expressions at random locations much easier as the set source location
affects all new expressions created within that scope, to any depth.
Debug output is much easier to read now.