As it is now a completely separate sub-system, there is a bit of trouble
with mouse handling in that curses must be initialized before input for
the mouse to work properly, but the basic scheme seems to be working
nicely. I suspect the solution to the init order issue is to make have
the curses sub-system initialize the terminal input driver, at least for
mouse input (ie, maybe just enable/disable mouse handing).
The queues in the curses resources struct have been cleaned up and the
threading support code (including for the queues (pipes, really)) has
been moved to its own file.
The input test app currently just prints the devices and the events as
they come in, but demonstrates the new input system working in a
separate thread (though it is currently in with the curses thread).
The common input code (input outer loop and event handling) has been
moved into libQFinput, and modified to have the concept of input drivers
that are registered by the appropriate system-level code (x11, win,
etc).
As well, my evdev input library code (with hotplug support) has been
added, but is not yet fully functional. However, the idea is that it
will be available on all systems that support evdev (Linux, and from
what I've read, FreeBSD).
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
And fix an error in floatview.
The z-transform program is so I can test out my math and eventually
develop some hopefully interesting sound generators.
The editor now uses the vertical scrollbar for handling mouse wheel
scrolling, thus keeping the scrollbar in sync.
Scrollbar index can now cover the full range (not sure why I had that
-1), and the potential divide by zero is avoided properly.
Thumb-tab now positioned properly when the range is 0.
This gets all the basic cursor motion from my old editor working.
arrow keys: left/right/up/down char/line
home/end: beginning/end of line
page up/down
and ctrl versions where left/right are prev/next work, up/down skip over
indents, home/end are beginning/end of screen, and page up/down are
beginning/end of text.
The word boundaries are currently vary simple, just transitions from
alnum_ (as it was in my old editor and in Borland's editors), but the
basic logic is working.
Currently, home always moves the cursor to the very first column, but
I'm considering making it move the cursor to the first non-space
character of the line if it's not already there, otherwise to the first
column (ie, the cursor will toggle between the two positions if it's in
one of them).
Support for finding the first address associated with a source line was
added to the engine, returning 0 if not found.
A temporary breakpoint is set and the progs allowed to run free.
However, better handling of temporary breakpoitns is needed as currently
a "permanent" breakpoint will be cleared without clearing the temporary
breakpoing if the permanent breakpoing is hit while execut-to-cursor is
running.
Basic arrow key motion, and it's currently limited to not scrolling
horizontally (need to figure out how to handle max scroll), but this
also fixes the cursor handling on focus switching :)
While qfcc will always align double values to 8 bytes (really, two
global words) regardless of the underlying hardware, gcc does not:
doubles are only 4-byte aligned on 32-bit hardware.
This fixes the invalid debug target handle when running on i686.
QF now uses its own configuration file (quakeforge.cfg for now) rather
than overwriting config.cfg so that people trying out QF in their normal
quake installs don't trash their config.cfg for other quake clients. If
quakeforge.cfg is present, all other config files are ignored except
that quake.rc is scanned for a startdemos command and that is executed.
While this caused some trouble for pr_strings and configurable strftime
(evil hacks abound), it's the result of discovering an ancient (from
maybe as early as 2004, definitely before 2012) bug in qwaq's printing
that somehow got past months of trial-by-fire testing (origin understood
thanks to the warning finding it).
I never liked that some of the macros needed the type as a parameter
(yay typeof and __auto_type) or those that returned a value hid the
return statement so they couldn't be used in assignments.
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
I think I wasn't sure at the time whether the simple variable was
required for pthread_cond_wait (and friends) to work properly, but it
is: the time between the target posting the debug event and the target
waiting on the condition variable turns out to sometimes be enough for
the debugger to handle the event and signal the target to continue,
resulting in the target waiting on a signal that will never come because
another debug event will not be sent by the target until AFTER it has
exited from the debug handler.
Pressing F8 (or n) while the debug target was running would cause it to
stop at that point. While it's certainly desirable to stop a runaway
target on demand, that should be with a different input. Now, commands
that start the target running are ignored while the target is running.
No commands for when the target is running have been implemented yet,
but the provision is there.
Same issue as for the menus. But now I know why PR_LoadProgsFile is used
instead of PR_LoadProgs (at least for qwaq): avoidance of the gamedir
restriction (however, the menus are supposed to be restricted).
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
I decided that stopping in between function calls that are on the same
line is a good thing as it gives a chance to skip over the first but
step into the second.
This allows a debugger to do any symbol lookups and other preparations
between loading progs and the first code execution. .ctors are called as
per normal if debug_handler is not set.
While this does answer the question of how I'll go about restarting the
target progs (when I get to that point), it was required just to start
full-on ruamoko progs because .ctor was getting run in the main thread
and blocking due to trace.
In testing variable fw/precision in PR_Sprintf, I got a nasty reminder
of the limitations of the current progs ABI: passing @args to another QC
function does not work because the args list gets trampled but the
called function's locals. Thus, the need for a va_copy. It's not quite
the same as C's as it returns the destination args instead of copying
like memcpy, but it does copy the list from the source args to a
temporary buffer that is freed when the calling function returns.
Putting it in Editor worked as a proof of concept, but it seems those
always turn out to need tweaking like this because the concept proves
itself to be generally worthwhile :P
Leaking memory. And worse, it wasn't drawing its buttons (group wasn't
setting view contexts) and then the buttons were in the wrong place, so
had to add a backing buffer for the buttons.
This puts a print command (to Sys_Printf) into the queue making it
easier to check command sequences since regular printf is asynchronous
with the stream.