When a global variable is accessed via only an alias in a function the
actual def's flowvar would remain in the state it was from the last
function that accessed the global normally. This would result in invalid
flowvar accesses which can be difficult to reproduce (thus no test
case).
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
and its usage. The parts of flow_analyze_statement that use it know
where the returned operand needs to go. Unfortunately, this breaks dags
pretty hard, but that's because dags needs to learn about the fancy
assignment-type statements.
That was a fair bit trickier than I thought, but now .return and .paramN
are handled correctly, too, especially taking call instructions into
account (they can "kill" all 9 defs).
As expected, this does not fix the mangled pointer problem in
struct-init-param.r, but it does improve the ud-chains. There's still a
problem with .return, but it's handling in flow_analyze_statement is a
bit "special" :P.
Doing the same thing at the end of two branches of an if/else seems off.
And doing an associative(?) set operation every time through a loop is
wasteful.
This the fixes the incorrect flow analysis caused by the def being seen
to have the wrong size (structure field of structure def seen through a
constant pointer). Fixes the ICE, but the pointer constant is broken
somewhere in dags, presumably.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
MOVEP's opc itself is always known and used, whether it's a constant
pointer or variable doesn't matter. This fixes the lost pointer calculation
for va_list.list[j] = object_from_plist (item);
Dead nodes are those that generate unused values (unassigned leaf nodes,
expressions or destinationless move(p) nodes). The revoval is done by the
flow analysis code (via the dags code) so that any pre and post removal
flow analysis and manipulation may be done (eg, available expressions).
If MOVEP's destination is variable, then the actual destination isn't (at
this stage) knowable, so it can't be attached to the dagnode and thus must
be a child.
Getting the operands directly from the statement was missing the
destination operand of movep when movep's op_c was a constant pointer and
thus the flowvar wasn't being counted/created early enough. This led to a
segfault in the set code when attempting to add -1 to the set.
Unreachable nodes will cause the first elements of the array to remain
unwritten by df_search. This fixes the segfaults caused by unreachable
nodes (the reason they were an internal error before).
MOVE (static move) and MOVEP to a pointer constant know exactly where their
data is going, so treat them similarly to assignments: save their
distination operands (the addressed def for MOVEP) and mark them as
defined.