The jobs will become the core of the renderer, with each job step being
one of a render pass, compute pass, or processor (CPU-only) task. The
steps support dependencies, which will allow for threading the system in
the future.
Currently, just the structures, parse support, and prototype job
specification (render.plist) have been implemented. No conversion to
working data is done yet, and many things, in particular resources, will
need to be reworked, but this gets the basic design in.
Due to a typo in the list of extra property list items to add to the
symbol table (corrected), subsequent symbols were pointing to the wrong
memory address.
Most importantly, this cleans up creation of self-referencing symbol
tables from property lists, but adds in C-defined symbols as well. While
QFV_ParseRenderInfo is currently the only the function that uses it, it
might be helpful in the future, especially as I clean up the other parse
support code.
The render passes seem to be created successfully, but pipelines fail
due to not having layout set, resulting in a segfault (bug in validation
layers?).
.dictionary can ask for standard parsing via a .parse key (value is
ignored currently).
Fields can use $auto to use standard parsing for that field.
If either is used, the plist field descriptors are written.
This gets an empty (no tasks or pipelines connected) render context
initialized and available for other subsystems to register their task
functions. Nothing is using it yet, but the test parse of rp_main_def
fails gracefully (needs those tasks).
This just sets up the memory block and cexpr descriptors for the
parameters, parameter parsing is separate (and next). The parameters are
aligned to their size.
Needed to add the render passes plitem to the cexr symbol table, too.
All that remains is to figure out how to deal with multiview (or really
@next) and get task parsing working.
A bunch of missed struct members, incorrect parse types, and some logic
errors in the parse setup. Still not working due to problems with
vectors from plist string references and some other errors, but getting
there.
This treats dictionary items as arrays ordered by key creation (ie, the
order of the key/value pairs in the dictionary is preserved). The label
is written to the specified field when parsing the struct. Both actual
arrays and single element "arrays" are supported.
There's still a lot of work to do, but the basics are in. The spec will
be parsed into info structs that can then be further processed to
generate all the actual structs, generally making things a little less
timing dependent (eg, image view info refers to its image by name).
The new render pass and subpass structs have their names mangled for now
until I can switch over to the new system.
There are some missing parts from this commit as these are the fairly
clean changes. Missing is building a separate set of pipelines for the
new render pass (might be able to get away from that), OIT heads texture
is flat rather than an array, view matrices aren't set up, and the
fisheye renderer isn't hooked up to the output pass (code exists but is
messy). However, with the missing parts included, testing shows things
mostly working: the cube map is rendered correctly even though it's not
displayed correctly (incorrect view). This has definitely proven to be a
good test for Vulkan's multiview feature (very nice).
It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
The real reason for the delay in implementing support for pNext is I
didn't know how to approach it at the time, but with the experience I've
gained using and modifying vkparse, the solution turned out to be fairly
simple. This allows for the use of various extensions (eg, multiview,
which was used for testing, though none of the hookup is in this
commit). No checking is done on the struct type being valid other than
it must be of a chainable type (ie, have its own pNext).
This allows a single render pass description to be used for both
on-screen and off-screen targets. While Vulkan does allow a VkRenderPass
to be used with any compatible frame buffer, and vkparse caches a
VkRenderPass created from the same description, this allows the same
description to be used for a compatible off-screen target without any
dependence on the swapchain. However, there is a problem in the caching
when it comes to targeting outputs with different formats.
It simply parses the referenced plist dictionary (via @inherit =
plist.path;) into the current data block, then allows the data to be
overwritten by the current plist dictionary. This may be a bit iffy for
any allocated resources, so some care must be taken, but it seems to
work nicely.
This allows a single render pass description to be used for both
on-screen and off-screen targets. While Vulkan does allow a VkRenderPass
to be used with any compatible frame buffer, and vkparse caches a
VkRenderPass created from the same description, this allows the same
description to be used for a compatible off-screen target without any
dependence on the swapchain. However, there is a problem in the caching
when it comes to targeting outputs with different formats.
This needed changing Vulkan_CreatePipeline to
Vulkan_CreateGraphicsPipeline for consistency (and parsing the
difference from a plist seemed... not worth thinking about).
I had forgotten that the parameters are in reverse order, and even if I
had remembered, I forgot to reset offset before the second loop.
Pre-decrementing offset takes care of both issues at once.
Fixes the warning about parse_fixed_array not being used (oops, the
problem with partial commits), but more importantly, gives access to
things like maxDescriptorSetSamplers.
This will make property list expressions easier to work with. The
library is rather limited right now (trig, dot, min/max/bound) but even
just min adds a lot of functionality.
I want to support reading VkPhysicalDeviceLimits but it has some arrays.
While I don't need to parse them (VkPhysicalDeviceLimits should be
treated as read-only), I do need to be able to access them in property
list expressions, and vkgen generates the cexpr type descriptors too.
However, I will probably want to parse arrays some time in the future.
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.