With the improved atlas allocation, 2x is no longer needed and 1.2x
seems to be sufficient. Most importantly, it reduced the texture for
amiri-regular.ttf at 72 pix height from 8x to 4x (the staging buffer
isn't big enough for 8k textures).
Currently, only 16 fonts can be loaded (I need to sort out descriptor
set pools), but glyphs are grouped into batches of the same font. While
not quite optimal as it can result in bouncing between descriptor sets a
lot, it's still reasonably efficient.
Line rendering now has its own pipeline (removing the texture issue).
Glyph rendering (for fonts) has been reworked to use instanced quad
rendering, with the geometry (position and texture coords) in a static
buffer (uniform texture buffer), and each instance has a glyph index,
color, and 2d base position.
Multiple fonts can be loaded, but aren't used yet: still just the one
(work needs to be done on the queues to support multiple
textures/fonts).
Quads haven't changed much, but buffer creation and destruction has been
cleaned up to use the resource functions.
Its value on input is ignored. QFV_CreateResource writes the resource
object's offset relative to the beginning of the shared memory block.
Needed for the Draw overhaul.
I got tired of writing the same 13 or so lines of code over and over (it
actually put me off experimenting with Vulkan). Thus...
QFV_PacketCopyBuffer does the work of handling barriers and a (full
packet) copy from the staging buffer to a GPU buffer.
QFV_PacketCopyImage does a similar job, but for images. However, it
still needs a lot of work, but it does make getting a basic texture onto
the GPU much less of a hassle.
Both functions should make staging data much less error-prone.
This moves the qfv_resobj_t image initialization code from the IQM
loader into the resource management code. This will allow me to reuse
the code for setting up glyph data. As a bonus, it cleans up the IQM
code nicely.
A passage object has a list of all the text objects in the given string,
where the objects represent either white space or "words", as well as a
view_t object representing the entire passage, with paragraphs split
into child views of the passage view, and each paragraph has a child
view for every text/space object in the paragraph.
Paragraphs are split by '\n' (not included in any object).
White space is grouped into clumps such that multiple adjacent spaces
form a single object. The standard ASCII space (0x20) and all of the
Unicode characters marked "WS;<compat> 0020" are counted as white space.
Unless a white space object is the first in the paragraph, its view is
marked for suppression by the view flow code.
Contiguous non-white space characters are grouped into single objects,
and their views are not suppressed.
All text object views (both white space and "word") have their data
pointer set to the psg_text_t object representing the text for that
view. This should be suitable for simple text-mode unattributed display.
More advanced rendering would probably want to create suitable objects
and set the view data pointers to those objects.
No assumption is made about text direction.
Passage and paragraph views need to have their primary axis sizes set
appropriately, as well as their resize flags. Their xlen and ylen are
both set to 10, and xpos,ypos is 0,0. Paragraph views need their
setgeometry pointer set to the appropriate view_flow_* function.
However, they are set up to have their secondary axis set automatically
when flowed.
Text object views are set up for automatic flowing: grav_flow, 0,0 for
xpos,ypos. However, xlen and ylen are also both 0, so need to be set by
the renderer before attempting to flow the text.
Adjusting the size of the parent (container) view to the views it
contains will be useful for automatic layout and knowing how large the
view is for scrolling. New tests added so testing both with and without
the option is still possible.
This should be suitable for laying out text objects with word-wrap,
where each view is a "word" or break between "words". This should be
useful for any other objects that could benefit from similar layout
rules. All eight flows are supported left-right-top-down (English and
most European languages), right-left-top-down (Arabic and similar),
top-down-right-left (Chinese, Japanese, Korean), top-down-left-right,
as well as bottom-up variants of those four.
More work is needed for support of things like views being centered on
the flow line rather than on one edge (depends on flow direction),
offset views, and others. Suppression of "spaces" at the beginning of a
line is supported but not tested.
Due to the changes related to console views, the console was either
fully visible or not at all visible, so it took several seconds to
disappear whenever closed.
Taking the screen data from the event fixes the console size being out
due to screen_view updating after the app_window event fires. Really,
this makes it independent of the order.
UVs being 0 meant that lines were picking up the upper left pixel of
char 0 of conchars. With quake data, this meant a transparent pixel.
Fixes invisible debug lines :P.
It turns out that using the swapchain image for the size requirements is
unreliable: when running under renderdoc, vkGetImageMemoryRequirements
sets the memory requirements fields to 0, leading eventually to a null
memory object being passed to vkMapMemory, which does not end well.
I had missed that vkCmdCopyImage requires the source and destination
images to have exactly the same size, and I guess assumed that the
swapchain images would always be the size they said they were, but this
is not the case for tiled-optimal images. However,
vkCmdCopyImageToBuffer does the right thing regardless of the source
image size.
This fixes the skewed screenshots when the window size is not a multiple
of 8 (for me, might differ for others).
There's a problem with screenshot capture in that the image is sheared
after window resize, but the screen view looks good, and vulkan is happy
with the state changes.
As gbuf_base derives from the base pipeline, it inherits base's dynamic
setting, and thus doesn't need its own. I had a FIXME there as I wasn't
sure why I had a redundant setting, but I really can't see why I'd want
it different from any of the other main renderpass pipelines.
I've found and mostly isolated the parts of the code that will be
affected by window resizing, minus pipelines but they use dynamic
viewport and scissor settings and thus shouldn't be affected so long as
the swapchain format doesn't change (how does that happen?)
Finally, the model_funcs and render_funcs struts use designated
initializers. Not only are they good for ensuring correct
initialization, they're great for the programmer finding the right
initializer.
I must have forgotten about the SYS_DeveloperID_... enum values, when I
wrote that code, because relying on the line number is not really for
the best.
Due to design issues in the console API that I don't feel like
addressing at this stage, the console view is not a child of the
client's screen view (not even sure it should be in the first place), so
it won't get resized automatically when the client's screen view
resizes. However, ie_app_window is sent when the screen size changes,
and the console has to process input events anyway, so it's quite
reasonable to handle the event.
With the addition of dependencies on freetype and harfbuzz, it became
clear that the renderer plugins need to be explicitly linked against
external dependencies (and that I need to do more installed testing,
rather than just my static local builds). This fixes the unresolved
symbols when attempting to load any of the plugins.
qwaq doesn't supply a backtile pic, so Draw_TileClear in the gl and glsl
renderers would segfault when qwaq's window width changed due to some
back-tile being drawn.
As of a recent nvidia driver update, it became necessary to enable the
feature. I guess older drivers (or vulkan validation layers?) were a bit
slack in their checking (or perhaps I didn't actually get those lighting
changes working at the time despite having committed them).
This did involve changing some field names and a little bit of cleanup,
but I've got a better handle on what's going on (I think I was in one of
those coding trances where I quickly forget how things work).
Just head and tail are atomic, but it seems to work nicely (at least on
intel). I actually had more trouble with gcc (due to accidentally
testing lock-free with the wrong ring buffer... oops, but yup, gcc will
happily optimize your loop to spin really really fast). Also served as a
nice test for C11 threading.
This makes bsp traversal even more re-entrant (needed for shadows).
Everything needed for a "pass" is taken from bsp_pass_t (or indirectly
through bspctx_t (though that too might need some revising)).
Ambient lights are represented by a point at infinity and a zero
direction vector (spherical lights have a non-zero direction vector but
the cone angle is 360 degrees). This fixes what appeared to be mangled
light renderers (it was actually just an ambient light being treated as
a directional light (point at infinity, but non-zero direction vector).
There are some issues with the light renderers getting mangled, and only
the first light is even touched (just begin and end of render pass), but
this gets a lot of the framework into place.
Sounds odd, but it's part of the problem with calling two different
things with essentially the same name. The "high level" render pass in
question may be a compute pass, or a complex series of (Vulkan) render
passes and so won't create a Vulkan render pass for the "high level"
render pass (I do need to come up with a better name for it).
I really don't remember why I made it separate, though it may have been
to do with r_ent_queue. However, putting it together with the rest is
needed for the "render pass" rework.