I found a need to check for shifts separately (not sure it's the right
approach for that problem, though), and there are a few more math ops
than just +-*/.
I'm not sure what it's useful for, but GLSL has a function for it thus I
decided to add the instruction to the VM, so this is part of the
compiler side.
The name for VMMUL was outright wrong (outer), but both MVMUL and VMMUL
can be mul because of the type and width/columns specifiers. I think
OUTER can too, but I'll leave that for now.
I got a sync validation error on a scatter command (I think) thus the
setting was probably wrong. Most of the parameters are still what they
were, but I'll be able to tweak the barriers as necessary.
Unfortunately, it didn't help with the hang on fetching the light cull
query data when starting in fisheye mode (no hang when enabling fisheye
after startup). I'm not sure what's going on there other than the
queries aren't getting updated: the counts seem to be fine so maybe the
commands aren't running. I've probably got a tangled mess of
pseudo-parallel command buffers: I need to go through my system and
clean everything up.
The tricky bit was figuring out how to get `floor()` out of the
available instructions. It's handy that the comparison ops always
returned floats and didn't force the use of branches.
Now both width and columns must match for an instruction to be selected.
Found a few errors in my opcode specs, and some minor goofs in the type
system (really just overthinking things when I added matrices).
Only matrix-vector, vector-matrix and vector-vector outer products (no
more room), but that's enough to get decent performance out of
matrix-matrix and matrix-scalar (both of which can be done as a set of
matrix-vector or vertex-scalar products).
Progs version bumped because I found that I'd put the swizzle and 2d
wedge ops in the wrong spot (compared to both intention and docs) and
rather than adjust the docs, I took advantage of the opportunity to get
a nicer layout for the wedge products (nestled into the spare slots left
by the 2x2 matrix ops, which seems fitting as the 2d wedge is the
determinant of a 2x2 matrix).
Implemented via specific overloads of the function.
It's not quite working correctly in that parameter names are taken from
the declaration instead of definition. However, this seems to be an old
bug that went unnoticed due to me almost always using the same parameter
names in declaration and definition.
Also, the code in get_function() is a horrible mess.
However, the basic idea turned out to be simpler than I though (though
details of the implementation are indeed a little trickier): generic
functions are essentially prototype generators when implemented using
non-generic specialized overloads.
Yet another step closer to glsl support.
While it wasn't correct anyway (neither vectors nor quaternions are
colors), the additional names broke q.s in the quaternion.r test, likely
due to there being two s fields.
For now, it's just recording that type type has attributes (encoding
begins with %) and resurrecting types_same which is used only when
matching with types with attributes, so there's still a fair bit of work
to do.
I'm not sure why I made those functions take const type_t *, but they
didn't need it. There's still a relevant fixime in find_handle, but I
haven't decided how to fix that one just yet.
I'm sure there are still some warts, but interface declaration now works
for spir-v and a real vertex shader can be compiled (albeit one that
doesn't use matrices).
Arrays done via the field code since they use the same opcode and logic.
For now swizzles are just swizzles and don't support zeroing or negating
(but doing one or the other (not both) should be easy).