It now lives in vulkan_renderpass.c and takes most of its parameters
from plist configs (just the name (which is used to find the config),
output spec, and draw function from C). Even the debug colors and names
are taken from the config.
Brush models looked a little too tricky due to the very different style
of command queue, so that's left for now, but alias, iqm and sprite
entities are now labeled. The labels are made up of the lower 5 hex
digits of the entity address, the position, and colored by the
normalized position vector. Not sure that's the best choice as it does
mean the color changes as the entity moves, and can be quite subtle
between nearby entities, but it still helps identify the entities in the
command buffer.
And, as I suspected, I've got multiple draw calls for the one ogre. Now
to find out why.
Id Software had pretty much nothing to do with the vulkan renderer (they
still get credit for code that's heavily based on the original quake
code, of course).
While I have trouble imagining it making that much performance
difference going from 4 verts to 3 for a whopping 2 polygons, or even
from 2 triangles to 1 for each poly, using only indices for the vertices
does remove a lot of code, and better yet, some memory and buffer
allocations... always a good thing.
That said, I guess freeing up a GPU thread for something else could make
a difference.
This needed changing Vulkan_CreatePipeline to
Vulkan_CreateGraphicsPipeline for consistency (and parsing the
difference from a plist seemed... not worth thinking about).
This should fix the horrid frame rate dependent behavior of the view
model.
They are also in their own descriptor set so they can be easily shared
between pipelines. This has been verified to work for Draw.
Multiple render passes are needed for supporting shadow mapping, and
this is a huge step towards breaking the Vulkan render free of Quake,
and hopefully will lead the way for breaking the GL renderers free as
well.
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
There were actually several problems: translucency wasn't using or
depending on the depth buffer, and the depth buffer wasn't marked as
read-only in the g-buffer pass. Getting that correct seems to have given
bigass1 a 0.5% boost (hard to say, could be the usual noise).
That was... easier than expected. A little more tedious that I would
have liked, but my scripting system isn't perfect (I suspect it's best
suited as the output of a code generator), and the C side could do with
a little more automation.
While I could reconstruct the position from the screen coords and depth,
this is easier and good enough for now. Reconstruction is an
optimization thing.
After getting lights even vaguely working for alias models, I realized
that it just wasn't going to be feasible to do nice lighting with
forward rendering. This gets the bulk of the work done for deferred
rendering, but still need to sort out the shaders before any real
testing can be done.
It's not entirely there yet, but the basics are working. Work is still
needed for avoiding duplication of objects (different threads will have
different contexts and thus different tables, so necessary per-thread
duplication should not become a problem) and general access to arbitrary
fields (mostly just parsing the strings)
Short wrappers for Draw functins are in vid_render_vulkan.c so the
vulkan context can be passed on to the actual functions. The 2D shaders
are set up similar to those in glsl, but with full 32-bit color (rgba)
support instead of paletted. However, the textures are not loaded yet,
nor is anything bound.