I think I had gotten lucky with captures not being corrupt due to them
being much bigger than all but the L3 cache (and then they're over 1/2
the size), so the memory was being automatically invalidated by other
activity. Don't want to trust such luck, though.
It makes a significant difference to level load times (approximately
halves them for demo1 and demo2). Nicely, it turns out I had implemented
the rest of the staging buffer code (in particular, flushing) correctly
in that it seems there's no corruption any of the data.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
QFS_NextFilename was renamed to QFS_NextFile to reflect the fact it now
returns a QFile pointer for the newly created file (as well as the
name). This necessitated updating WritePNG to take a file pointer
instead of a file name, with the advantage that WritePNGqfs is no longer
necessary and callers have much more control over the creation of the
file.
This makes QFS_NextFile much more secure against file system race
conditions and attacks (at least in theory). If nothing else, it will
make it more robust in a multi-threaded environment.
It's not there yet as it promptly closes the file and returns only the
filename (and then only the portion within the user's directory tree).
However, this worked nicely as a test for Sys_UniqueFile.
QF currently uses unique file names for screenshots and server-side
demos (and remote snapshots), but they're generally useful.
QFS_NextFilename has been filling this role, but it is highly insecure
in its current implementation. This is the first step to taking care of
that.
The tests fail due to differences in how clang and gcc treat floating
point to unsigned integral type conversions when the values overflow. It
wouldn't be so bad if clang was consistent with conversions to 32-bit
unsigned integers, like it seems to be with conversion to 64-bit
unsigned integers.
With this, the "get QF building with clang" mini-project is done and I
won't have to panic when someone comes to me and asks if it will work.
At worst, there'll be a little bit-rot.
clang doesn't like the same variable name being used in nested
expression statements, so give the "safety" variables in reused macros
semi-meaningful (based on macro name) tails to keep them separate.
Only edicts themselves get a smaller alignment (4, 8 or 32 bytes,
depending on hardware and progs version). I didn't want to waste too
much memory on edict alignment for progs that don't need any better than
void *, but the zone really wants 64 bytes, and the stack might as well
have 64 bytes as well. Fixes a segfault when running v6 progs in a clang
build (clang got really agressive with simd in zone.c).
gcc and clang have rather different swizzle builtins, but both do a nice
job of optimizing the intuitive initializer swizzle (I think gcc 8(?)
didn't do such a good job thus my use of __builtin_shuffle).
The "not" because I'm pretty sure they're false positives due to when
the function is called, but clang doesn't know that (wonder why gcc was
ok with it).
clang doesn't like anything but a bare 0 as null (and in some of the
cases, it was quite right: '\0' should not be treated as a null
pointer). And the crashers were just for paranoia and probably aren't
needed any more (kept for now, though).
It seems clang defaults to unsigned for enums. Interestingly, gcc was ok
with the checks being either way. I guess gcc treats enums that *can* be
unsigned as DWIM.
Still work with gcc, of course, and I still need to fix them properly,
but now they're actually slightly easier to find as they all have vec_t
and FIXME on the same line.
While clang accepts gcc's optimization options, it produces a warning
when it ignores them, so need to set -Werror before checking for those
options when building with -Werror otherwise the build will fail.
Viewport and FOV updates are now separate so updating one doesn't cause
recalculations of the other. Also, perspective setup is now done
directly from the tangents of the half angles for fov_x and fov_y making
the renderers independent of fov/aspect mode. I imagine things are a bit
of a mess with view size changes, and especially screen size changes
(not supported yet anyway), and vulkan winds up updating its projection
matrices every frame, but everything that's expected to work does
(vulkan errors out for fisheye or warp due to frame buffer creation not
being supported yet).
If the entity didn't have a known model type, R_StoreEfrags would get
stuck in an infinite loop (fortunately, never actually happened. The
result of making it not call Sys_Error for unknown models)).
Definitely not something for the renderer to care about directly (ie, at
most, a post-process filter setting or palette update, which is how it
actually is currently).
I meant to do this a while ago but forgot about it. Things are a bit of
a mess in that the renderer knows too much about entities, but
eventually the renderer will know about only things to render (meshes,
particles, etc).
The quake-specific enums are now in the client header, and the particle
system now has a gravity field rather than getting it from
vid_render_data (which I hope to eventually get rid of entirely).