While Draw_Glyph does draw only one glyph at a time, it doesn't shape
the text every time, so is a major win for performance (especially
coupled with pre-shaped text).
And add a function to process a passage into a set of views with glyphs.
The views can be flowed: they have flow gravity and their sizes set to
contain all the glyphs within each view (nominally, words). Nothing is
tested yet, and font rendering is currently broken completely.
Font and text handling is very much part of user interface and at least
partially independent of rendering, but does fit it better with GUI than
genera UI (ie, both graphics and text mode), thus libQFgui as well as
libQFui are built in the ui directory.
The existing font related builtins have been moved into the ruamoko
client library.
In theory, it supports all the non-palette formats, but only luminance
and alpha (tex_l and tex_a) have been tested. Fixes the rather broken
glyph rendering.
Where too far is 1024 units as that is the maximum supported, or the
radius. The change to using unsigned for the distances meant the simple
checks missed the effective max dist going negative, thus leading to a
segfault.
It seemed like a good idea at the time, but it exacerbates pixel leakage
in atlas textures that have no border pixels (even in nearest sampling
modes).
Currently only for gl/glsl/vulkan. However, rather than futzing with
con_width and con_height (and trying to guess good values), con_scale
(currently an integer) gives consistent pixel scaling regardless of
window size.
I had forgotten that the cl structs in nq and qw were different layouts,
which resulted in qw's sbar/hud being quite broken. Rather than messing
with the structs, I decided it would be far better in the long run to
clean up sbar's access to the cl struct and the few other nq/qw specific
globals it used. There are still plenty of bugs to fix, but now almost
everything is in the one place.
It seems this isn't needed any more (not sure why) as both glsl and
vulkan are happy without it. Also unsure why moving to ECS made gl and
sw change behavior regarding rendering the test models in my scene.
While the libraries are probably getting a little out of hand, the
separation into its own directory is probably a good thing as an ECS
should not be tied to scenes. This should make the ECS more generally
useful.
This fixes the segfault due to the world entity not actually existing,
without adding a world entity. It takes advantage of the ECS in that the
edge renderer needs only the world matrix, brush model pointer, and the
animation frame number (which is just 0/1 for brush models), thus the
inherent SOA of ECS helps out, though benchmarking is needed to see if
it made any real difference.
With this, all 4 renderers are working again.
Since entity_t has a pointer to the registry owning the entity, there's
no need to access a global to get at the registry. Also move component
getting closer to where it's used.
This puts the hierarchy (transform) reference, animation, visibility,
renderer, active, and old_origin data in separate components. There are
a few bugs (crashes on grenade explosions in gl/glsl/vulkan, immediately
in sw, reasons known, missing brush models in vulkan).
While quake doesn't really need an ECS, the direction I want to take QF
does, and it does seem to have improved memory bandwidth a little
(uncertain). However, there's a lot more work to go (especially fixing
the above bugs), but this seems to be a good start.
qwaq doesn't supply a backtile pic, so Draw_TileClear in the gl and glsl
renderers would segfault when qwaq's window width changed due to some
back-tile being drawn.
This breaks console scaling for now (con_width and con_height are gone),
but is a major step towards window resize support as console stuff
should never have been in viddef_t in the first place.
The client screen init code now sets up a screen view (actually the
renderer's scr_view) that is passed to the client console so it can know
the size of the screen. The same view is used by the status bar code.
Also, the ram/cache/paused icon drawing is moved into the client screen
update code. A bit of duplication, but I do plan on merging that
eventually.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
This does mean that the gl and sw renderers can no longer call
S_ExtraUpdate, but really, they shouldn't be anyway. And I seem to
remember it not really helping (been way too long since quake ran that
slowly for me).
The gl water warp ones have been useless since very early on due to not
doing water warp in gl (vertex warping just didn't work well), and the
recent water warp implementation doesn't need those hacks. The rest of
the removed flags just aren't needed for anything. SURF_DRAWNOALPHA
might get renamed, but should be useful for translucent bsp surfaces
(eg, vines in ad_tears).
One more step towards BSP thread-safety. This one brought with it a very
noticeable speed boost (ie, not lost in the noise) thanks to the face
visframes being in tightly packed groups instead of 128 bytes apart,
though the sw render's boost is lost in the noise (but it's very
fill-rate limited).
This is next critical step to making BSP rendering thread-safe.
visframe was replaced with cluster (not used yet) in anticipation of BSP
cluster reconstruction (which will be necessary for dealing with large
maps like ad_tears).
The main goal was to get visframe out of mnode_t to make it thread-safe
(each thread can have its own visframe array), but moving the plane info
into mnode_t made for better data access patters when traversing the bsp
tree as the plane is right there with the child indices. Nicely, the
size of mnode_t is the same as before (64 bytes due to alignment), with
4 bytes wasted.
Performance-wise, there seems to be very little difference. Maybe
slightly slower.
The unfortunate thing about the change is the plane distance is negated,
possibly leading to some confusion, particularly since the box and
sphere culling functions were affected. However, this is so point-plane
distance calculations can be done with a single 4d dot product.
The map uses 41% of a 4k light map scrap, and 512 texture descriptors
wasn't enough for vulkan. Ouch. I do need to get cvars on these things,
but this will do for now (decades later...)
This gives a rather significant speed boost to timedemo demo1: from
about 2300-2360fps up to 2520-2600fps, at least when using
multi-texture.
Since it was necessary for testing the scrap, gl got the ability to set
the console background texture, too.
The parsing of light data from maps is now in the client library, and
basic light management is in scene. Putting the light loading code into
the Vulkan renderer was a mistake I've wanted to correct for a while.
The client code still needs a bit of cleanup, but the basics are working
nicely.
This replaces *_NewMap with *_NewScene and adds SCR_NewScene to handle
loading a new map (for quake) in the renderer, and will eventually be
how any new scene is loaded.
I doubt the calls were ever actually made in a normal map due to the
node actually being a node when breaking out of the loop, but when I
experimented with an empty world model (no nodes, one infinite empty
leaf) I found that visit_leaf was getting called twice instead of once.
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
Still work with gcc, of course, and I still need to fix them properly,
but now they're actually slightly easier to find as they all have vec_t
and FIXME on the same line.