This is the bulk of the work for recording the resource pointer with
with builtin data. I don't know how much of a difference it makes for
most things, but it's probably pretty big for qwaq-curses due to the
very high number of calls to the curses builtins.
Closes#26
Now that the data is fetched from the correct location, the locals view
is useful again :). However, there seems to be a problem with array
views: not sure they're showing the correct data as I was getting
unexpected values in the display but normal vars seem to be ok.
While the .tmp defs weren't too much clutter in v6p progs, the .arg defs
in Ruamoko progs make for a lot of noise. Showing only user defs (those
without a leading .) makes for a much more usable locals display.
It now takes the function name to print in error message (passed on to
PR_Sprintf) and the argument number of the format string. The variable
arguments (in ...) are assumed to be immediately after the format
argument.
This is actually an old bug in qwaq that was masked by v6p progs
parameter passing: it was just luck that event got put in the correct
parameter and not trampled until the responder saw it. Ruamoko progs,
however, simply lost the event entirely because it never got explicitly
passed by the listener implementation.
This was easy to achieve in v6p progs because all return values passed
through .return and thus could not be lost. However, Ruamoko progs use a
return pointer which can wind up pointed into the void (the return
buffer) and thus cause the return value to be lost. Using @return on
obj_msg_sendv bounces the return pointer through to the called function.
In addition, nil is returned when the forwarding target is nil.
or 512kW (kilowatts? :P). Barely enough for vkgen to run (it runs out if
auto release is run during scan_types, probably due to fragmentation). I
imagine I need to look into better memory management schemes, especially
since I want to make zone allocations 64-byte aligned (instead of the
current 8). And it doesn't help that 16 words per allocation are
dedicated to the zone management.
Anyway, with this, vgken runs and produces sufficiently correct results
for the rest of QF to build, so long as qfcc is not optimizing.
It doesn't do much good for dynamic progs memory because zone currently
aligns to 8 bytes (oops, forgot to fix that), but at least the stack and
globals are properly aligned.
The ABI for the Ruamoko ISA set currently puts va_list into the
parameter stream whenever a varargs function is called. Unfortunately,
IMP is declared with ... and thus cannot be used directly unless all
methods become varargs, but I think that would cause even more
headaches.
This cleans up dprograms_t, making it easier to read and see what chunks
are in it (I was surprised to see only 6, the explicit pairs made it
seem to have more).
This is part of the work for #26 (Record resource pointer with builtin
function data). Currently, the data pointer gets as far as the
per-instance VM function table (I don't feel like tackling the job of
converting all the builtin functions tonight). All the builtin modules
that register a resources data block pass that block on to
PR_RegisterBuiltins.
This will make it possible for the engine to set up their parameter
pointers when running Ruamoko progs. At this stage, it doesn't matter
*too* much, except for varargs functions, because no builtin yet takes
anything larger than a float quaternion, but it will be critical when
double or long vec3 and vec4 values are passed.
Update qdb_get_string's mangling for qfcc's new unsigned int support and
fix an incorrect cast of the param pointer passed by prd_runerror that
caused a segfault when trying to use the string. Attempting to use
qwaq-app (ie, the qc debugger) on Ruamoko ISA progs mostly works, but
the defs are decidedly unhappy (due to the base registers).
Terminal apps effectively always have focus (unless I find a way to know
when an xterm loses/gains focus). Fixes input-app not updating on evdev
events.
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
Forgetting to invoke [super dealloc] in a derived class's -dealloc
method has caused me to waste far too much time chasing down the
resulting memory leaks and crashes. This is actually the main focus of
issue #24, but I want to take care of multiple paths before I consider
the issue to be done.
However, as a bonus, four cases were found :)
I have no idea why the code is disabled (especially considering the
comment), so leaving it that way for now, but this makes the code
compile when enabled.
It's very much a hack, but it will do for now until I can rewrite the
whole thing: it's not at all thread safe, but it is over eight years
old and has survived a lot of bit-rot.
The old math functions from quake and quakeworld don't belong with the
newer ones as their presence in the same object file causes invalid
builtin warnings when pr_cmds isn't present.
With some hacks that are not included (plan on handling events and
contexts properly), button inputs, including using listeners, are
working nicely: my little game is working again. While the trampoline
code was a bit repetitive (and I do want to clean that up), connecting
button listeners directly to Ruamoko instance methods proved to be quite
nice.
And create rua_game to coordinate other game builtins.
Menus are broken for key handling, but have been since the input rewrite
anyway. rua_input adds the ability to create buttons and axes (but not
destroy them). More work needs to be done to flesh things out, though.
Until now, the new qwaq startup was used only in command-line tools and
console applications where things like Ruamoko security and having a
hunk were not an issue. Now the start up code (qwaq-*.c) can specify
that Ruamoko is to be secured and provide a hunk on a per-thread basis,
and the thread data is passed into the progs code via a progs resource.