Basic arrow key motion, and it's currently limited to not scrolling
horizontally (need to figure out how to handle max scroll), but this
also fixes the cursor handling on focus switching :)
For now, just bsearch (normal and fuzzy), qsort, and prefixsum (not in
C's stdlib that I know of, but I think having native implementations of
float and int prefix sums will be useful.
Fuzzy bsearch is useful for finding an entry in a prefix sum array
(value is >= ele[0], < ele[1]), and the reentrant version is good when
data needs to be passed to the compare function. Adapted from the code
used in pr_resolve.
While qfcc will always align double values to 8 bytes (really, two
global words) regardless of the underlying hardware, gcc does not:
doubles are only 4-byte aligned on 32-bit hardware.
This fixes the invalid debug target handle when running on i686.
A bit of a mess for optimized vs unoptimized, but the tests acknowledge
the differences in precision while checking that the code produces the
right results allowing for that precision.
It seems that i686 code generation is all over the place reguarding sse2
vs fp, with the resulting differences in carried precision. I'm not sure
I'm happy with the situation, but at least it's being tested to a
certain extent. Not sure if this broke basic (no sse) i686 tests.
GCC does a fairly nice job of producing code for vector types when the
hardware doesn't support SIMD, but it seems to break certain math
optimization rules due to excess precision (?). Still, it works well
enough for the core engine, but may not be well suited to the tools.
However, so far, only qfvis uses vector types (and it's not tested yet),
and tools should probably be used on suitable machines anyway (not
forces, of course).
I don't know that the cache line size is 64 bytes on 32 bit systems, but
it should be ok to assume that 64-byte alignment behaves well on systems
with smaller cache lines so long as they are powers of two. This does
mean there is some waste on 32-bit systems, but it should be fairly
minimal (32 bytes per memblock, which manages page sized regions).
The Blend macro supports any non-integral type supporting * and +
(float, double, vec4f_t, etc), so it is essentially a scalar VectorBlend
or QuatBlend.
Legacy progs do not have the extended defs data (and usually won't have
anything more complicated than a vector), so use the basic type size for
the def size. Fixes broken edict prints.
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Because LoadImage uses Hunk_TempAlloc, the face images need to be copied
individually. Really, what's neeeded is to be able to load the image
data into a pre-allocated buffer (ideally, the staging buffer for
vulkan, but that's for later).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
The built up "path" name of the handle resource was not always surviving
the intervening call to cexpr_eval_string (in particular, when other
handles were created in the process of creating a handle). Rather than
simply increase the number of va buffers (where would it end?), just
regenerate the path when adding the new handle. It's probably quick
enough, and the code is not usually not on a critical path.
I was reading about multi-pass rendering on mobile devices
(https://developer.oculus.com/blog/loads-stores-passes-and-advanced-gpu-pipelines/)
and discovered that I had used the wrong flags (but then, I think Graham
Sellers had, too, since used his Vulkan Programming Guide as a
reference). Doesn't seem to make any difference on desktop, but as
there's no loss there, but potential gains on mobile, I'd say it's a
win.