The grid calculations are modified from those of Inigo Quilez
(https://iquilezles.org/articles/filterableprocedurals/), but give very
nice results: when thin enough, the lines fade out nicely instead of
producing crazy moire patterns. Though currently disabled, the default
planes are the xy, yz and zx planes with colored axes.
The biggest change was splitting up the job resources into
per-render-pass resources, allowing individual render passes to
reallocate their resources without affecting any others. After that, it
was just getting translucency and capture working after a window resize.
While there will be some GPU resources to sort out for multi-pass bsp
processing, I think this is the last piece required before shadow passes
can be implemented.
Samplers have no direct relation to render passes or pipelines, so
should not necessarily be in the same config file. This makes all the
old config files obsolete, and quite a bit of support code in vkparse.c.
This gets screenshots working again. As the implementation is now a
(trivial) state machine, the pause when grabbing a screenshot is
significantly reduced (it can be reduced even further by doing the png
compression in a separate thread).
The new system seems to work quite nicely with brush models, which was
the intent, but it's nice to see. Hopefully, it works well when it comes
to shadows. There's still water warp and screen shots to fix, and
fisheye to get working, as well.
Gotta be sure :)
With the new system mostly up and running (just bsp rendering and
descriptor sets/layout handling to go, and they're independent of the
old render pass system), the old system can finally be cleared out.
The particles die instantly due to curFrame not updating (next commit),
but otherwise work nicely, especially sync is better (many thanks to
Darian for his help with understanding sync scope).
This was necessary to get the 2d elements drawn after the fence had been
fired (thus indicating descriptors could be updated) but before actual
rendering of the 2d elements (which is how it was done before the switch
to the new system).
It turns out there was a bug in the old iqm push constants spec (I still
need to figure out how to use layouts in the new system so I can
completely delete the old).
The output system's update_input takes a parameter specifying the render
step from which it is to get the output view of that step and updates
its descriptors as necessary.
With this, the full render job is working for alias models (minus a few
glitches).
Many thanks to Peter and Darian for clearing up my misunderstanding of
how vkResetCommandPool works. The manager creates command buffers from
the command pool on an as-needed basis (when the queue of available
buffers is empty), and keeps track of those buffers in a queue. When the
pool is reset, the queues (one each for primary and secondary command
buffers) are reset such that the tracked buffers are available again.
Imageless framebuffers would probably be easier and cleaner, but this
takes care of the validation error attempting to present the second
frame (because rendering was being done to the first frame's swapchain
image instead of the second frame's).
The new render system now passes validation for the first frame (but
no drawing is done by the various subsystems yet). Something is wrong
with how swap chain semaphores are handled thus the second frame fails.
Frame buffer attachments can now be defined externally, with
"$swapchain" supported for now (in which case, the swap chain defines
the size of the frame buffer).
Also, render pass render areas and pipeline viewport and scissor rects
are updated when necessary.
I don't like the current name (update_framebuffer), but if the
referenced render pass doesn't have a framebuffer, one is created. The
renderpass is referenced via the active renderpass of the named render
step. Unfortunately, this has uncovered a bug in the setup of renderpass
objects: main.deferred has output's renderpass, and main.deferred_cube
and output have bogus renderpass objects.
Being able to specify the types in the push constant ranges makes it a
lot easier to get the specification correct. I never did like having to
do the offsets and sizes by hand as it was quite error prone. Right now,
float, int, uint, vec3, vec4 and mat4 are supported, and adheres to
layout std430.
This is with the new render job scheme. I very much doubt it actually
works (can't start testing until everything passes, and it's disabled
for the moment (define in vid_render_vulkan.c)), but it's helping iron
out what more is needed in the render system.
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
The warning flag check worked too well: it enabled the warning and
autoconf's default main wanted the const attribute. The bug has been
floating around for a while, it seems.
Really, a bit more than stub as the basic code is there, but nothing
works properly yet due to missing resources (especially descriptor sets
and pools), and the frame buffer creation is still disabled.
The step dependencies are not handled yet as threading isn't used at
this stage, but since I'll require dependencies to always come earlier,
this shouldn't cause a problem.
The jobs will become the core of the renderer, with each job step being
one of a render pass, compute pass, or processor (CPU-only) task. The
steps support dependencies, which will allow for threading the system in
the future.
Currently, just the structures, parse support, and prototype job
specification (render.plist) have been implemented. No conversion to
working data is done yet, and many things, in particular resources, will
need to be reworked, but this gets the basic design in.
Render passes and subpasses are now mostly initialized, just command
buffers and frame buffer related info to go (including view/scissor for
pipelines).
Not only does this quieten the validation layers, it ensures that all
the object handles are named and where they need to be. Also fixes only
one pipeline being created instead of the 15 or so.
The render passes seem to be created successfully, but pipelines fail
due to not having layout set, resulting in a segfault (bug in validation
layers?).
I don't remember why I kept the abbreviated configs for images and image
views, but it because such that I need to be able to specify them
completely. In addition, image views support external images.
The rest was just cleaning up after the changes to qfv_resobj_t.
.dictionary can ask for standard parsing via a .parse key (value is
ignored currently).
Fields can use $auto to use standard parsing for that field.
If either is used, the plist field descriptors are written.
They're currently just stubs, but this gets the render info loading
working without any errors. The next step is to connect up pipelines and
create the image resources, then implementing the task functions will
have meaning.
This gets an empty (no tasks or pipelines connected) render context
initialized and available for other subsystems to register their task
functions. Nothing is using it yet, but the test parse of rp_main_def
fails gracefully (needs those tasks).
This just sets up the memory block and cexpr descriptors for the
parameters, parameter parsing is separate (and next). The parameters are
aligned to their size.
A bunch of missed struct members, incorrect parse types, and some logic
errors in the parse setup. Still not working due to problems with
vectors from plist string references and some other errors, but getting
there.
There's still a lot of work to do, but the basics are in. The spec will
be parsed into info structs that can then be further processed to
generate all the actual structs, generally making things a little less
timing dependent (eg, image view info refers to its image by name).
The new render pass and subpass structs have their names mangled for now
until I can switch over to the new system.
While the old system did get things going, it felt clunky to set up,
especially when it came to variations on render passes (eg, flat vs
cube-mapped). Also, much of it felt inside-out, especially the
separation of pipelines and render passes: having to specify the render
pass and subpass in the pipeline spec made the spec feel overly coupled
to the render pass setup. While this is the case in Vulkan, it is not
reflected properly in the pipeline spec. The new system will adjust the
render pass and subpass parameters of the pipeline spec as needed,
making the pipeline specs more reusable, and hopefully less error prone
as the pipelines are directly referenced by the subpasses that use them.
In addition, subpass dependencies should be much easier to set up as
only the dependent subpass specifies the dependency and the subpass
source dependency is mentioned by name. Frame buffer attachments also
get a similar treatment.
The new spec "format" isn't quite finalized (needs to meet the enemy
known as parsing) but it feels like a good starting place.
There are some missing parts from this commit as these are the fairly
clean changes. Missing is building a separate set of pipelines for the
new render pass (might be able to get away from that), OIT heads texture
is flat rather than an array, view matrices aren't set up, and the
fisheye renderer isn't hooked up to the output pass (code exists but is
messy). However, with the missing parts included, testing shows things
mostly working: the cube map is rendered correctly even though it's not
displayed correctly (incorrect view). This has definitely proven to be a
good test for Vulkan's multiview feature (very nice).
The pic is scaled to fill the specified rect (then clipped to the
screen (effectively)). Done just for the console background for now, but
it will be used for slice-pics as well.
Not implemented for vulkan yet as I'm still thinking about the
descriptor management needed for the instanced rendering.
Making the conback rendering conditional gave an approximately 3% speed
boost to glsl with the GL stub (~12200fps to ~12550fps), for either
conback render method.
While Draw_Glyph does draw only one glyph at a time, it doesn't shape
the text every time, so is a major win for performance (especially
coupled with pre-shaped text).
Font and text handling is very much part of user interface and at least
partially independent of rendering, but does fit it better with GUI than
genera UI (ie, both graphics and text mode), thus libQFgui as well as
libQFui are built in the ui directory.
The existing font related builtins have been moved into the ruamoko
client library.
Thanks to the 3d frame buffer output being separate from the swap chain,
it's possible to have a different frame buffer size from the window
size, allowing for a smaller buffer and thus my laptop can cope (mostly)
with the vulkan renderer.
I had debated putting the blending in the compose subpass or a separate
pass but went with the separate pass originally, but it turns out that
removing the separate pass gains 1-3% (5-15/545 fps in a timedemo of
demo1).
It's a bit flaky for particles, especially at higher frame rates, but
that's due to supporting only 64 overlapping pixels. A reasonable
solution is probably switching to a priority heap for the "sort" and
upping the limit.
I don't yet know whether they actually work (not rendering yet), but the
system isn't locking up, and shutdown is clean, so at least resources
are handled correctly.
This splits up render pass creation so that the creation of the various
resources can be tailored to the needs of the actual render pass
sub-system. In addition, it gets window resizing mostly working (just
some problems with incorrect rendering).
This is the minimum maximum count for sampled images, and with layered
shadow maps (with a minimum of 2048 layers supported), that's really way
more than enough.
Things are a bit of a mess with interdependence between sub-module
initialization and render pass initialization, and window resizing is
broken, but the main render pass rendering to an image that is then
post-processed (currently just blitted) is working. This will make it
possible to implement fisheye and water warp (and other effects, of
course).