It's a bit disconcerting seeing a builtin in the top 10 when builtins
are counted by call while progs functions are counted by instruction.
Also, show the total profile after the function top-10 list.
I abandoned the reason for doing it (adding a pile of vector types), but
I liked the cleanup. All the implementations are hand-written still, but
at least the boilerplate stuff is automated.
Of course, only in Ruamoko progs, but it works quite nicely.
global_string is now passed the absolute address of the referenced
operand. With a little groveling through the progs stack, it should be
possible to resolve pointers to locals in functions further up the
stack.
This fixes Ruamoko's return format string. It looks like it's producing
the correct address (but doesn't show all the information it should),
but the rest of the debug code needs work locals.
They now include base register index and effective address of the
operands (though it may be wrong for instructions that don't use a base
register for that operand).
This cleans up dprograms_t, making it easier to read and see what chunks
are in it (I was surprised to see only 6, the explicit pairs made it
seem to have more).
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
They are both gone, and pr_pointer_t is now pr_ptr_t (pointer may be a
little clearer than ptr, but ptr is consistent with things like intptr,
and keeps the type name short).
I don't know why they were ever signed (oversight at id and just
propagated?). Anyway, this resulted in "unsigned" spreading a bit, but
all to reasonable places.
And partial implementations in qfcc (most places will generate an
internal error (not implemented) or segfault, but some low-hanging fruit
has already been implemented).
I wish I'd done it this way years ago (but maybe gcc 2.95 couldn't hack
the casts, I do know there were aliasing problems in the past). Anyway,
this makes operand access much more consistent for variable sized
operands (eg float vs double vs vec4), and is a big part of the new
instruction set implementation.
The opcode table is a nightmare to maintain, but this does clean it up
and speed up opcode lookups since they can now be indexed. Of course, it
turns out I had missed adding several instructions, so had to fix that,
and qfcc needed a bit of a re-jigger to get the opcode out of the table.
The switch from using pr_functions (dfunction_t) to function_table
(bfunction_t) for keeping track of the current function (and thus
profiling data) broke PR_Profile as it never saw anything but 0.
Even NUM_FOR_BAD_EDICT will have a bad day if the edict pointer is
invalid, so make sure that the entity pointer is valid (within the edict
area AND a multiple of edict size).
PR_LoadDebug now does only the initial version and crc checks, and the
byte-swapping of the loaded symbols file. PR_DebugSetSym sets up all the
pointers.
Support for finding the first address associated with a source line was
added to the engine, returning 0 if not found.
A temporary breakpoint is set and the progs allowed to run free.
However, better handling of temporary breakpoitns is needed as currently
a "permanent" breakpoint will be cleared without clearing the temporary
breakpoing if the permanent breakpoing is hit while execut-to-cursor is
running.
While this caused some trouble for pr_strings and configurable strftime
(evil hacks abound), it's the result of discovering an ancient (from
maybe as early as 2004, definitely before 2012) bug in qwaq's printing
that somehow got past months of trial-by-fire testing (origin understood
thanks to the warning finding it).
The server edict arrays are now stored outside of progs memory, only the
entity data itself (ie data accessible to progs via ent.fld) is stored in
progs memory. Many of the changes were due to code accessing edicts and
entity fields directly rather than through the provided macros.
I never liked that some of the macros needed the type as a parameter
(yay typeof and __auto_type) or those that returned a value hid the
return statement so they couldn't be used in assignments.
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.