Now we can get tight (<1e-6 * radius_squared error) bounding spheres. More
importantly (for qfvis, anyway) very quickly: 1.7Mspheres/second for a 5
point cloud on my 2.33GHz Core 2 :)
It "works" for lines, triangles and tetrahedrons. For lines and triangles,
it gives the barycentric coordinates of the perpendicular projection of the
point onto to features. Only tetrahedrons are guaranteed to reproduce the
original point.
It was supposed to be 2, but for some reason I neglected to set it when I
set up the options parsing. However, level 4 is the standard for production
maps, and it happens to be faster than level 2 (at least for gmsp3v2.bsp)
I think the reason I didn't think of that when I tried to improve qfvis's
performance many years ago is I just simply did not understand
ClipToSeparators. However, the difference caching the separators makes is
phenomenal. Before the change, single threaded qfvis would get stuck on one
particular portal for at least a day (I gave up waiting), but now even a
debug build will complete gmsp3v2.bsp in less than 12 minutes (4 threads on
my quad-core). And that's at level 2! Getting stuck for a day was at level
0.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
While noticeably slower than the previous expanded set manipulation code,
this is much easier to read. I can worry about optimizing the set code when
I get qfvis behaving better.
I'd forgotten that ED_ConvertToPlist mangled light into light_lev and
single component angle values into a vector. This fixes much of the
breakage in qflight (but not the light levels)
This removes a lot of redundant code from qflight (though it does become
dependent of libQFgamecode *shrug*). The nice thing is qflight now uses the
exact same code to load entities as does the server.
Sys_LongTime returns time in microseconds as a 64-bit int. Sys_DoubleTime
uses Sys_LongTime, converts to double and offsets 0 time by 4G (2**32).
This gives us consistent sub-microsecond precision for a very long time.
See http://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
The data needed for the checks has been gone from QF for a very long time
(since Jan 2000), and good riddance to it, really: I suspect it's in
violation of id's copyright on the game data (ok, it might be fair use, but
still...).
Something is funny with Ubuntu such that -ldl needs to be specifically
added even though QFutil's .la specifies it. I don't know if it's a libtool
issue or not, but this does work.
More will probably be necessary, but this was sufficient to get prover to
the point where qfcc segged building qwaq (0.7.2).