This breaks console scaling for now (con_width and con_height are gone),
but is a major step towards window resize support as console stuff
should never have been in viddef_t in the first place.
The client screen init code now sets up a screen view (actually the
renderer's scr_view) that is passed to the client console so it can know
the size of the screen. The same view is used by the status bar code.
Also, the ram/cache/paused icon drawing is moved into the client screen
update code. A bit of duplication, but I do plan on merging that
eventually.
view_new sets the geometry, but any setgeometry that need a valid data
pointer would get null. It might be better to always have the data
pointer, but I didn't feel like doing such a change at this stage as
there are quite a lot of calls to view_new. Thus view_new_data which
sets the data pointer before calling setgeometry.
This replaces old_console_t with con_buffer_t for managing scrollback,
and draw_charbuffer_t for actual character drawing, reducing the number
of calls into the renderer. There are numerous issues with placement and
sizing, but the basics are working nicely.
I really don't know why I tried to do ring-buffers without gaps, the
code complication is just not worth the tiny savings in memory. In fact,
just the switch from pointers to 32-bit offsets saves more memory than
not having gaps (on 64-bit systems, no change on 32-bit).
It handles basic cursor motion respecting \r \n \f and \t (might be a
problem for id chars), wraps at the right edge, and automatically
scrolls when the cursor tries to pass the bottom of the screen.
Clearing the buffer resets its cursor to the upper left.
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
PR_Debug_ValueString prints the value at the given offset using the
provided type to format the string. The formatted string is appended to
the provided dstring.
If no handler has been registered, then the corresponding parameter is
printed as a pointer but with surrounding brackets (eg, [0xfc48]). This
will allow the ruamoko runtime to implement object printing.
While VRect_Difference worked for subrect allocation, it wasn't ideal as
it tended to produce a lot of long, narrow strips that were difficult to
reuse and thus wasted a lot of the super-rectangle's area. This is
because it always does horizontal splits first. However, rewriting
VRect_Difference didn't seem to be the best option.
VRect_SubRect (the new function) takes only width and height, and splits
the given rectangle such that if there are two off-cuts, they will be
both the minimum and maximum possible area. This does seem to make for
much better utilization of the available area. It's also faster as it
does only the two splits, rather than four.
It's implemented only in the Vulkan renderer, partly because there's a
lot of experimenting going on with it, but the glyphs do get transferred
to the GPU (checked in render doc). No rendering is done yet: still
thinking about whether to do a quick-and-dirty test, or to add HarfBuzz
immediately, and the design surrounding that.
The software renderer uses Bresenham's line slice algorithm as presented
by Michael Abrash in his Graphics Programming Black Book Special Edition
with the serial numbers filed off (as such, more just so *I* can read
the code easily), along with the Chen-Sutherland line clipping
algorithm. The other renderers were more or less trivial in comparison.
Most were pretty easy and fairly logical, but gib's regex was a bit of a
pain until I figured out the real problem was the conditional
assignments.
However, libs/gamecode/test/test-conv4 fails when optimizing due to gcc
using vcvttps2dq (which is nice, actually) for vector forms, but not the
single equivalent other times. I haven't decided what to do with the
test (I might abandon it as it does seem to be UD).
This gets ambient sounds (in particular, water and sky) working again
for quakeworld after the recent sound changes, and again for nq after I
don't know how long.
Getting the tag is possibly useful in general and definitely in
debugging. Setting, I'm not so sure as it should be done when allocated,
but that's not always possible.
Also, correct the return type of z_block_size, though it affected only
Z_Print. While an allocation larger than 4GB is... big for zone, the
blocks do support it, so printing should too.
And use it for Ruamoko object reference counts.
I need reference counts for dealing with block sound buffers since they
can be shared by many channels. I figured I take care of Ruamoko's
reference count location at the same time.
Fixes#27.
sfx_t is now private, and cd_file no longer accesses channel_t's
internals. This is necessary for hiding the code needed to make mixing
and channel management *properly* lock-free (I've been getting away with
murder thanks to x86's strong memory model and just plain luck with
gcc).
And make Sys_MaskPrintf take the developer enum rather than just a raw
int.
It was actually getting some nasty hunk corruption errors when under
memory pressure that made it clear the sound system needs some work.
I always wanted it there, there were dependency issues at the time. I
guess they got cleaned up for the most part since then (other than
cd_file, but it's on my hit-list).
The texture animation data is compacted into a small struct for each
texture, resulting in much less data access when animating the texture.
More importantly, no looping over the list of frames. I plan on
migrating this to at least the other hardware renderers.
The models are broken up into N sub-(sub-)models, one for each texture,
but all faces using the same texture are drawn as an instance, making
for both reduced draw calls and reduced index buffer use (and thus,
hopefully, reduced bandwidth). While texture animations are broken, this
does mark a significant milestone towards implementing shadows as it
should now be possible to use multiple threads (with multiple index and
entid buffers) to render the depth buffers for all the lights.
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
Sub-models and instance models need an instance data buffer, but this
gets the basics working (and the proof of concept). Using arrays like
this actually simplified a lot of the code, and will make it easy to get
transparency without turbulence (just another queue).
The gl water warp ones have been useless since very early on due to not
doing water warp in gl (vertex warping just didn't work well), and the
recent water warp implementation doesn't need those hacks. The rest of
the removed flags just aren't needed for anything. SURF_DRAWNOALPHA
might get renamed, but should be useful for translucent bsp surfaces
(eg, vines in ad_tears).
One more step towards BSP thread-safety. This one brought with it a very
noticeable speed boost (ie, not lost in the noise) thanks to the face
visframes being in tightly packed groups instead of 128 bytes apart,
though the sw render's boost is lost in the noise (but it's very
fill-rate limited).
This is next critical step to making BSP rendering thread-safe.
visframe was replaced with cluster (not used yet) in anticipation of BSP
cluster reconstruction (which will be necessary for dealing with large
maps like ad_tears).
The main goal was to get visframe out of mnode_t to make it thread-safe
(each thread can have its own visframe array), but moving the plane info
into mnode_t made for better data access patters when traversing the bsp
tree as the plane is right there with the child indices. Nicely, the
size of mnode_t is the same as before (64 bytes due to alignment), with
4 bytes wasted.
Performance-wise, there seems to be very little difference. Maybe
slightly slower.
The unfortunate thing about the change is the plane distance is negated,
possibly leading to some confusion, particularly since the box and
sphere culling functions were affected. However, this is so point-plane
distance calculations can be done with a single 4d dot product.
GCC does a nice enough job compiling the more readable form (though
admittedly, hadd is possibly more readable than what's there for
dot[fd], hadd is supposedly slower than the shuffles and adds, and qfvis
seems to support that).
This fixes the annoying persistence of inputs when respawning and
changing levels. Axis input clearing is hooked up but does nothing as of
yet. Active device input clearing has always been hooked up, but also
does nothing in the evdev and x11 drivers.
It was added only because FitzQuake used it in its pre-bsp2 large-map
support. That support has been hidden in bspfile.c for some time now.
This doesn't gain much other than having one less type to worry about.
Well tested on Conflagrant Rodent (the map that caused the need for
mclipnode_t in the first place).
This was one of the biggest reasons I had trouble understanding the bsp
display list code, but it turns out it was for dealing with GLES's
16-bit limit on vertex indices. Since vulkan uses 32-bit indices,
there's no need for the extra layer of indirection. I'm pretty sure it
was that lack of understanding that prevented me from removing it when I
first converted the glsl bsp code to vulkan (ie, that 16-bit indices
were the only reason for elements_t).
It's hard to tell whether the change makes much difference to
performance, though it seems it might (noisy stats even over 50 timedemo
loops) and the better data localization indicate it should at least be
just as good if not better. However, the reason for the change is
simplifying the data structures so I can make bsp rendering thread-safe
in preparation for rendering shadow maps.
They should probably be cause leafsurfaces since they are the actual
surfaces of the leaf: ie, the faces of the leaf mesh if each leaf was
sub-sub-model.
For now, at least (I have some ideas to possibly reduce the numbers and
also to avoid the need for actual limits). I've seen gmsp3v2 use over
500 lights at once (it has over 1300), and I spent too long figuring out
that weird light behavior was due to the limit being hit and lights
getting dropped (and even longer figuring out that more weird behavior
was due to the lack of shadows and the world being too bright in the
first place).