There are some missing parts from this commit as these are the fairly
clean changes. Missing is building a separate set of pipelines for the
new render pass (might be able to get away from that), OIT heads texture
is flat rather than an array, view matrices aren't set up, and the
fisheye renderer isn't hooked up to the output pass (code exists but is
messy). However, with the missing parts included, testing shows things
mostly working: the cube map is rendered correctly even though it's not
displayed correctly (incorrect view). This has definitely proven to be a
good test for Vulkan's multiview feature (very nice).
I ran into the need to get at the label of labeled array element and the
best way seemed to be by setting the name field of the plfield_t item
passed to the parser function, and then found that PL_ParseSymtab
already does this. I then decided passing the array index would also be
good, and the offset field made sense.
Canvas_SortComponentPool now takes the raw canvas component id as it is
specialized to the canvas subpools.
Canvas_SetLen resizes the root view and then updates the hierarchy for
every canvas in the system.
Canvas_InitSys sets up the component system with the systems it needs
(canvas, view, text). This is required to ensure view_href is just past
the canvas components as it is needed for retrieving the actual canvas
component (and thus sub-pool range ids) from arbitrary views in the
canvas.
Entities are fetched with the correct offset from the pool entities.
This will make it easy for client code to set up data needed by the
console before the console initializes. It already separates console
cvar setup and initialization, which has generally been a good thing.
This is a bit of a hack to allow me to work on vulkan's screen update
"pipeline" without having to mess with the other renderers, since it
turns out they're (currently) fundamentally incompatible.
The pic is scaled to fill the specified rect (then clipped to the
screen (effectively)). Done just for the console background for now, but
it will be used for slice-pics as well.
Not implemented for vulkan yet as I'm still thinking about the
descriptor management needed for the instanced rendering.
Making the conback rendering conditional gave an approximately 3% speed
boost to glsl with the GL stub (~12200fps to ~12550fps), for either
conback render method.
The wording might seem a little odd, but cl_screen is really the full 2D
client HUD while the console is completely independent of the client and
shouldn't know that the client even exists. Ideally, the resize events
would be handled by the canvas system, to which end this is a small
step.
This is the beginning of supporting 2d rendering in 3d space. The idea
is that a canvas can be in 2d orthographic space (not attached to any
entity with a 3d transform), or in 3d perspective space (attached to an
entity with a 3d transform, either as a child of the camera, or of some
object in 3d space).
It will replace the current HUD code when it's working.
I found I needed the subrange start as well as the end, but I liked that
the subpools themselves used only the end of the range, so switching to
just a unint32_t for the value and adding a function to return a tuple
made sense. I had kept the struct because I thought I might want to
store additional information (eg, the entity "owning" the subpool), but
found that I didn't need such information as the systems using subpools
that way would have access to the entity by other means.
Interestingly, the change found a bug in subpool creation: I really
don't know why things worked before, but they work better now :)
Subpools are for grouping components by some criterion. Any component
that has a rangeid callback will be grouped with other components that
return the same render id. Note that the ordering of components within a
group will be affected by adding a component into a group that comes
before that group (or removing a component).
Component pools can have multiple groups, added and removed dynamically,
but removing a group should (currently) be done only when empty.
While "set" is a tad strong (there's just the one component for now), I
had missed the changes when adding ECS systems. Fixes the segfault at
the end of demo1 (ie, when any center text is printed).
Instead of creating new entities for the text views. This approximately
halves the number of entities required to display flowed text, but also
tests the ability to have an entity in multiple hierarchies (the goal of
the ECS component and system changes).
The system struct bundles the registry and component base together,
making it easier to reuse systems in multiple registries, or really,
easier to separate one set of ECS system components from those of other
systems.
While this does require an extra call after registering components, it
allows for multiple component sets (ie, sub-systems) to be registered
before the component pools are created. The base id for the registered
component set is returned so it can be passed to the subsystem as
needed.
There's now a main ecs.h file that includes the sub-system headers,
removing the need to explicitly include several header files, but the
sub-systems are a less cluttered.
This means that the component id used for hierarchy references must be
passed to Hierarchy_New and Hierarchy_Copy, but does all an entity to
have more than one hierarchy, which is useful for canvases (hierarchies
of views) in the 3d world (the canvas root would have a 3d hierarchy
reference and a 2d (view) hierarchy reference).
While Draw_Glyph does draw only one glyph at a time, it doesn't shape
the text every time, so is a major win for performance (especially
coupled with pre-shaped text).
Font cannot be overridden yet, but script attributes (language, script
type, direction) and features can be set at all three levels in a
passage. Attributes on the root level act as defaults for the paragraph
and word levels, and paragraph attributes act as defaults for the word
level.
This causes some problems with linking if libQFgui is linked with
libQFrenderer (which is necessary in the long run), but it seems
everything gets away with it for now (which, tbh, I don't like).
And add a function to process a passage into a set of views with glyphs.
The views can be flowed: they have flow gravity and their sizes set to
contain all the glyphs within each view (nominally, words). Nothing is
tested yet, and font rendering is currently broken completely.
Font and text handling is very much part of user interface and at least
partially independent of rendering, but does fit it better with GUI than
genera UI (ie, both graphics and text mode), thus libQFgui as well as
libQFui are built in the ui directory.
The existing font related builtins have been moved into the ruamoko
client library.
In theory, it supports all the non-palette formats, but only luminance
and alpha (tex_l and tex_a) have been tested. Fixes the rather broken
glyph rendering.
World scale can only be approximate if non-uniform scales and
non-orthogonal rotations are involved, but it is still useful
information sometimes.
However, the calculation is expensive (needs a square root), so remove
world scale as a component and instead calculate it on an as-needed
basis because it is quite expensive to do for every transform when it is
used only by the legacy-GL alias model renderer.
Thanks to the 3d frame buffer output being separate from the swap chain,
it's possible to have a different frame buffer size from the window
size, allowing for a smaller buffer and thus my laptop can cope (mostly)
with the vulkan renderer.
I had debated putting the blending in the compose subpass or a separate
pass but went with the separate pass originally, but it turns out that
removing the separate pass gains 1-3% (5-15/545 fps in a timedemo of
demo1).
viewstate's time is from cl.time which is not what's used to set
last_servermessage (that uses realtime). After careful investigation, I
found that cl.time is not at all suitable and that the original id code
used realtime (I think it was just me being lazy when I merged the
code). Fixes the stuck net icon.
quake changes rocket and grenade models to explosion models, but
quakeworld does not. This resulted in nq drawing two explosion sprites
instead of one. Separating the types allows nq to skip adding a sprite
for the explosion.