Although it works as intended (tested via hacking), it's not hooked up
as the current frame buffer handling in r_screen is not readily
compatible with how vulkan output is handled. This will need some
thought to get working.
When working, this will handle the output to the swap-chain images and
any final post-processing effects (gamma correction, screen scaling,
etc). However, currently the screen is just black because the image
for getting the main render pass output isn't hooked up yet.
While the HUD and status bar don't cut out a lot of screen (normally),
they might start to make a difference when I get transparency working
properly. The main thing is this is a step towards pulling the 2d
rendering into another render pass so the main deferred pass is
world-only.
There's no API yet as I need to look into the handling of qpic_t before
I can get any of this into the other renderers (or even vulkan, for that
matter).
However, the current design for slice rendering is based on glyphs (ie,
using instances and vertex pulling), with 3 strips of 3 quads, 16 verts,
and 26 indices (2 reset). Hacky testing seems to work, but real tests
need the API.
It turns out my approach to alias skin coloring just doesn't work for
the quake data due to the color curves not having a linear relationship,
especially the bottom colors.
Line rendering now has its own pipeline (removing the texture issue).
Glyph rendering (for fonts) has been reworked to use instanced quad
rendering, with the geometry (position and texture coords) in a static
buffer (uniform texture buffer), and each instance has a glyph index,
color, and 2d base position.
Multiple fonts can be loaded, but aren't used yet: still just the one
(work needs to be done on the queues to support multiple
textures/fonts).
Quads haven't changed much, but buffer creation and destruction has been
cleaned up to use the resource functions.
With the addition of dependencies on freetype and harfbuzz, it became
clear that the renderer plugins need to be explicitly linked against
external dependencies (and that I need to do more installed testing,
rather than just my static local builds). This fixes the unresolved
symbols when attempting to load any of the plugins.
The real reason for the delay in implementing support for pNext is I
didn't know how to approach it at the time, but with the experience I've
gained using and modifying vkparse, the solution turned out to be fairly
simple. This allows for the use of various extensions (eg, multiview,
which was used for testing, though none of the hookup is in this
commit). No checking is done on the struct type being valid other than
it must be of a chainable type (ie, have its own pNext).
This is intended for the built-in 8x8 bitmap characters and quake's
"conchars", but could potentially be used for any simple (non-composed
characters) mono-spaced font. Currently, the buffers can be created,
destroyed, cleared, scrolled vertically in either direction, and
rendered to the screen in a single blast.
One of the reasons for creating the buffer is to make it so scaling can
be supported in the sw renderer.
This means that QF should support more exotic fonts without any issue
(once the rest of the text handling system is up to snuff) as HarfBuzz
does all the hard work of handling OpenType, Graphite, etc text shaping,
including kerning (when enabled).
Also, font loading now loads all the glyphs into the atlas (preload is
gone).
It is currently an ugly hack for dealing with the separate quad queue,
and the pipeline handling code needs a lot of cleanup, but it works
quite well, though I do plan on moving to HarfBuzz for text shaping. One
nice development is I got updating of descriptor sets working (just need
to ensure the set is no longer in use by the command queue, which the
multiple frames in flight makes easy).
This allows the use of an entity id to index into the entity data and
fetch the transform and colormod data in the vertex shader, thus making
instanced rendering possible. Non-world brush entities are still not
rendered, but the world entity is using both the entity data buffer and
entid buffer.
The plists can now be accessed by name and the forward render pass
config is available (but not used, or tested beyond syntax). I was going
to have the IQM pipeline spec separate but ran into limitations in the
system (which needs a lot of polish, really).
Despite the base IQM specification not supporting blend-shapes, I think
IQM will become the basis for QF's generic model representation (at
least for the more advanced renderers). After my experience with .mu
models (KSP) and unity mesh objects (both normal and skinned), and
reviewing the IQM spec, it looks like with the addition of support for
blend-shapes, IQM is actually pretty good.
This is just the preliminary work to get standard IQM models loading in
vulkan (seems to work, along with unloading), and they very basics into
the renderer (most likely not working: not tested yet). The rest of the
renderer seems to be unaffected, though, which is good.
The resource subsystem creates buffers, images, buffer views and image
views in a single batch operation, using a single memory object to back
all the buffers and images. I had been doing this by hand for a while,
but got tired of jumping through all those vulkan hoops. While it's
still a little tedious to set up the arrays for QFV_CreateResource (and
they need to be kept around for QFV_DestroyResource), it really eases
calculation of memory object size and sub-resource offsets. And
destroying all the objects is just one call to QFV_DestroyResource.
While I have trouble imagining it making that much performance
difference going from 4 verts to 3 for a whopping 2 polygons, or even
from 2 triangles to 1 for each poly, using only indices for the vertices
does remove a lot of code, and better yet, some memory and buffer
allocations... always a good thing.
That said, I guess freeing up a GPU thread for something else could make
a difference.
This fixes (*ahem*) the vulkan renderer segfaulting when attempting to
take a screenshot. However, the image is upside down. Also, remote
snapshots and demo capture are broken for the moment.
Of course, it's not as correct as glsl or sw due to using polygons and
uvs rather than a fragment shader (not that such is out of the question
since GL 3.0 is requested, but I don't feel like getting shaders going
just for a couple of post-processing effects in an obsolete renderer).
The code dealing with state is a bit of a mess, but everything is
working nicely. Get around 400fps when all 6 faces need to be rendered
(no surprise: it should be about 1/6 of that for normal rendering). The
messy state handling code did not come as a surprise as I suspected
there were various mistakes in my scene rendering "recipe", and fisheye
highlighted them nicely (I'm sure getting this stuff working in Vulkan
will highlight even more issues).
Finally, after a decade :P Looks pretty good, too, and is (almost)
properly scaled to the resolution (almost because the effect is a little
squashed, but I think the sw renderer does the same).
Again, gl/vulkan not working yet (on the assumption that sw would be
trickier).
Fisheye overrides water warp because updating the projection map every
frame is far too expensive.
I've added a post-process pass to the interface in order to hide the
implementation details, but I'm not sure I'm happy about how the
multi-pass rendering for cube maps is handled (or having the frame
buffers as exposed as they are), but mainly because Vulkan will make
implementation interesting.
r_screen isn't really the right place, but it gets the scene rendering
out of the low-level renderers and will make it easier to sort out
later, and hopefully easier to figure out a good design for vulkan.
Finally. I never liked it (felt bad adding it in the first place), and
it has caused confusion with function and global variable names, but it
did let me get the render plugins working.
I got tired of having to maintain two separate software renderers, but
didn't want to just nuke sw32, so its core changes are merged into sw.
Alias model rendering is broken, but I know exactly what's wrong and how
to fix it, just need to take care due to asm.
GL still has its own functions for enabling and disabling fog while
rendering, but GLSL doesn't need such (thanks to the shaders), nor will
vulkan (and the software renderers don't support fog).
This gets the pipelines loaded (and unloaded on shutdown). Probably the
easy part :P. Still need to sort out the command buffers,
synchronization, and particle generation (and probably a bunch else
that's not coming to mind).
It turned out the bindless approach wouldn't work too well for my design
of the sprite objects, but I don't think that's a big issue at this
stage (and it seems bindless is causing problems for brush/alias
rendering via renderdoc and on my versa pro). However, I have figured
out how to make effective use of descriptor sets (finally :P).
The actual normal still needs checking, but the sprites are currently
unlit so not an issue at this stage.
This adds the shaders and the pipeline specs. I'm not sure that the
deferred rendering side of the render pass is appropriate, but I thought
I'd give it a go, since quake sprites are really cutoff rather than
translucent.
As the sw renderer's implementation was the closest to id's, it was used
as the model (thus a fair bit of cleanup is still needed). This fixes
some incorrect implementations in glsl and gl.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.