If a step has process tasks, any render or compute
pipelines/renderpasses are **not** run automatically: the idea is the
process tasks need to run the relevant pipelines in a custom manner but
needs the objects to be created.
The recent light changes highlighted that the renderer does not own the
efrags (segfault in qwaq when shutting down my test scene). After
digging through the history of efrag clearing, it turns out that the
renderer never owned them, I just didn't understand the concept of
scenes at the time that I moved efrags into the renderer.
This eliminates the O(N^2) (N = map leaf count) operation of finding
visible lights and will later allow for finer culling of the lights as
they can be tested against the leaf volume (which they currently are
not as this was just getting things going). However, this has severely
hurt ad_tears' performance (I suspect due to the extreme number of
leafs), but the speed seems to be very steady. Hopefully, reconstructing
the vis clusters will help (I imagine it will help in many places, not
just lights).
The grid calculations are modified from those of Inigo Quilez
(https://iquilezles.org/articles/filterableprocedurals/), but give very
nice results: when thin enough, the lines fade out nicely instead of
producing crazy moire patterns. Though currently disabled, the default
planes are the xy, yz and zx planes with colored axes.
Based on the article
(https://developer.nvidia.com/content/depth-precision-visualized), this
should give nice precision behavior, and removes the need to worry about
large maps getting clipped. If I'm doing my math correctly, despite
being reversed, near precision is still crazy high. And (thanks to the
reversed depth) about a quarter of a unit (for near clip of 4) out at 1M
unit distance.
This seems to be more for legacy X11 (ie, without fixes etc), but
fullscreen really shouldn't affect grabbing directly (rather, it should
be up to the client whether grabbing (and thus warping) is enabled at
all.
Due to doing most of my testing using the demos, I hadn't noticed the
double-draw until flying around with the debug camera (and it showed as
a weird shimmer behind the sky layers).
The lights debug is from the light splat experiment (this is why I kept
the code), and the bsp debug is based on that. Both currently disabled
for now until I get UI controls in.
SCR_UpdateScreen_Legacy now takes only the screen functions pointer (it
didn't need camera or realtime), and the camera sizzle code has been
moved into one place to make cleaning it up easier (when I get around to
auditing AngleVectors etc).
There's still the problem with unused variables when building for
windows because of vulkan debug stuff, but this fixes the important
errors. It actually still works (at least under wine).
The biggest change was splitting up the job resources into
per-render-pass resources, allowing individual render passes to
reallocate their resources without affecting any others. After that, it
was just getting translucency and capture working after a window resize.
It looks horrible due to the lack of lighting etc, but it's good enough
for basic testing, especially of my render job design (that passed with
flying colors).
I'm not sure I like fontconfig (docs are...), but it is pretty standard,
and I was able to find some reasonable examples on stackexchange
(https://stackoverflow.com/questions/10542832/how-to-use-fontconfig-to-get-font-list-c-c).
Currently, only the one font is handled, no font sets for fall backs
etc. It's meant for the debug UI I'm working on, so that shouldn't be a
big deal.
It's currently very simplistic (visible, not visible), but it gets
things started for making QF more usable in a windowed environment (not
having a visible cursor was fine in DOS, or when full screen, but not
when windowed (and not actively playing).
This let me keep clearValue's simple default rgba float interpretation,
but also have full control over access to the float32, int32 and uint32
fields.
This is necessary because fisheye rendering draws the scene up to 6
times per frame, which results in many of the limits being hit
prematurely, but updating r_framecount that often breaks dynamic lights.
Really? More to clean up before (vulkan) bsp rendering is thread-safe?
However, R_MarkLeaves was pretty close: just oldviewleaf and
visframecount, but that's still too much. Also, the reliance on
r_refdef.worldmodel irked me.
While there will be some GPU resources to sort out for multi-pass bsp
processing, I think this is the last piece required before shadow passes
can be implemented.
They were an interesting idea and might be useful in the future, but
they don't work as well as I had hoped for quake's maps due to the
overlapping light volumes causing contention while doing the additive
blends in the frame buffer. The cause was made obvious when testing in
the marcher map: most of its over 400 lights have infinite radius thus
require full screen passes: all those passes fighting for the frame
buffer did very nasty things to performance. However, light splats might be
useful for many small, non-overlapping light volumes, thus the code is
being kept (and I like the cleanups that came with it).
Move things around a bit so I can restore the previous behavior of doing
all lights in a single full screen pass but keep the code improvements
from trying to do splatted lighting.
The old system used just "views", but I had at some time decided that I
might want to support specifying buffers and buffer views, but forgot to
change the name in vkparse.c.
Samplers have no direct relation to render passes or pipelines, so
should not necessarily be in the same config file. This makes all the
old config files obsolete, and quite a bit of support code in vkparse.c.
This gets screenshots working again. As the implementation is now a
(trivial) state machine, the pause when grabbing a screenshot is
significantly reduced (it can be reduced even further by doing the png
compression in a separate thread).
The new system seems to work quite nicely with brush models, which was
the intent, but it's nice to see. Hopefully, it works well when it comes
to shadows. There's still water warp and screen shots to fix, and
fisheye to get working, as well.
Gotta be sure :)
With the new system mostly up and running (just bsp rendering and
descriptor sets/layout handling to go, and they're independent of the
old render pass system), the old system can finally be cleared out.
This fixes the insta-death of particles. Interestingly, other than
particles (due to the ring of buffers not being used correctly),
everything else worked nicely, so I guess 1-frame rendering got tested.
The particles die instantly due to curFrame not updating (next commit),
but otherwise work nicely, especially sync is better (many thanks to
Darian for his help with understanding sync scope).
bsp_draw_queue isn't the right place, but it's just place-holder code to
help get the rest of the renderers up and running before I tackle bsp
rendering. Fixes the segfault in demo1 when the zombies get gibbed,
resulting in zombie entities.
This was necessary to get the 2d elements drawn after the fence had been
fired (thus indicating descriptors could be updated) but before actual
rendering of the 2d elements (which is how it was done before the switch
to the new system).
It turns out there was a bug in the old iqm push constants spec (I still
need to figure out how to use layouts in the new system so I can
completely delete the old).
The output system's update_input takes a parameter specifying the render
step from which it is to get the output view of that step and updates
its descriptors as necessary.
With this, the full render job is working for alias models (minus a few
glitches).
When creating a new command buffer and appending it to a queue, the
active buffer count needs to be incremented too otherwise the new
command buffer will be accidentally reused prematurely. Not noticed
earlier because only one buffer was being created.
Many thanks to Peter and Darian for clearing up my misunderstanding of
how vkResetCommandPool works. The manager creates command buffers from
the command pool on an as-needed basis (when the queue of available
buffers is empty), and keeps track of those buffers in a queue. When the
pool is reset, the queues (one each for primary and secondary command
buffers) are reset such that the tracked buffers are available again.
Imageless framebuffers would probably be easier and cleaner, but this
takes care of the validation error attempting to present the second
frame (because rendering was being done to the first frame's swapchain
image instead of the second frame's).
Command buffer pools can't be reset until the commands have all been
executed. Having per-frame pools makes keeping track of pool lifetime
fairly easy.
Interleaving Vulkan objects with stucts containing vec4f_t results in
the vectors becoming unaligned when there is an odd number of objects in
a set, thus producing a segfault. Putting all the structs first prevents
any such issue.
The new render system now passes validation for the first frame (but
no drawing is done by the various subsystems yet). Something is wrong
with how swap chain semaphores are handled thus the second frame fails.
Frame buffer attachments can now be defined externally, with
"$swapchain" supported for now (in which case, the swap chain defines
the size of the frame buffer).
Also, render pass render areas and pipeline viewport and scissor rects
are updated when necessary.
I don't like the current name (update_framebuffer), but if the
referenced render pass doesn't have a framebuffer, one is created. The
renderpass is referenced via the active renderpass of the named render
step. Unfortunately, this has uncovered a bug in the setup of renderpass
objects: main.deferred has output's renderpass, and main.deferred_cube
and output have bogus renderpass objects.
Being able to specify the types in the push constant ranges makes it a
lot easier to get the specification correct. I never did like having to
do the offsets and sizes by hand as it was quite error prone. Right now,
float, int, uint, vec3, vec4 and mat4 are supported, and adheres to
layout std430.
This allows the likes of:
qfv_pushconstantrangeinfo_s = {
.name = qfv_pushconstantrangeinfo_t;
.type = (QFDictionary);
.dictionary = {
.parse = {
type = (labeledarray, qfv_pushconstantinfo_t, name);
size = num_pushconstants;
values = pushconstants;
};
stageFlags = $name.auto;
};
stageFlags = auto;
};
Leading to:
pushConstants = {
vertex = { Model = mat4; blend = float; };
fragment = { colors = uint; base_color = vec4; fog = vec4; };
};
Where the label of the labeled array (which pushConstants is) is
actually an enum flag and the dictionary value is another labeled array.
The up-coming changes to push constant handling has qfv_float etc type
enum values and using "float" instead of "qfv_float" is highly desirable
as the names match the glsl type names.