gcc didn't like a couple of the changes (rightly so: one was actually
incorrect), and the fix for qfcc I didn't think to suggest while working
with Emily.
The general CFLAGS etc fixes mostly required just getting the order of
operations right: check for attributes after setting the warnings flags,
though those needed some care for gcc as it began warning about main
wanting the const attribute.
Fixing the imui link errors required moving the ui functions and setup
to vulkan_lighting.c, which is really the only place they're used.
Fixing a load of issues related to autoconf and some small source-level issues to re-add clang support.
autoconf feature detection probably needs some addressing - partially as -Werror is applied late.
This has resulted in some rather interesting information: it seems the
surfaces (and thus, presumably bounding boxes) for leafs have little to
do with the actual leaf node's volume.
This allows components to display themselves in the UI. Because the
component meta-data is copied into the registry, the function pointer
can be updated by systems (eg, the renderers) to display system-specific
interpretations of the component.
This takes care of rockets and lava balls casting shadows when they
shouldn't (rockets more because the shadow doesn't look that nice, lava
balls because they glow and thus shouldn't cast shadows). Same for
flames, though the small torches lost their cool sconce shadows (need to
split up the model into flame and sconce parts and mark each
separately).
The use of a static set makes Mod_LeafPVS not thread safe and also means
that the set is not usable with the set iterators after going to a
smaller map from a larger map.
This also fixes the segfault in the previous commit.
Dynamic light shadow sizes are fixed, but can be controlled via the
dynlight_size cvar (defaults to 250).
While the insertion of dlights into the BSP might wind up being overly
expensive, the automatic management of the component pool cleans up the
various loops in the renderers.
Unfortunately, (current bug) lights on entities cause the entity to
disappear due to how the entity queue system works, and the doubled
efrag chain causes crashes when changing maps, meaning lights should be
on their own entities, not additional components on entities with
visible models.
Also, the vulkan renderer segfaults on dlights (fix incoming, along with
shadows for dlights).
This takes care of the type punning issue by each pass using the correct
sampler type with the correct view types bound. Also, point light and
spot light shadow maps are now guaranteed to be separated (it was just
luck that they were before) and spot light maps may be significantly
smaller as their cone angle is taken into account. Lighting is quite
borked, but at least the engine is running again.
I guess it's kind of UB, but it's handy for images that will be
conditionally written by the GPU but need to be in shader-read-only for
draw calls and the validation layers can't tell that the layers won't be
used.
This gets everything but the actual shadow map bindings working: the
validation layers don't like my type punning (which may well be the
right thing) and specialization constants don't help (yet, anyway) but I
want to get things into git.
It turns out bsp faces are still back-face culled despite the null point
being on the front of every possible plane... or really, because it's on
the front of every possible plane: sometimes the back face is the front
face, and this breaks the face selection code (a separate traversal
function will be needed for non-culling rendering).
Despite that, other than having to deal with different pipelines,
getting the model renderers working went better than expected.
This involved rewriting the descriptor update code too, but that now
feels cleaner.
The matrices are loaded into a storage buffer as it can get quite big at
6 matrices per light (and the current max lights is 768).
The parameter will be passed on to the pipeline tasks in their task
context, allowing for communication between the subsystem calling
QFV_RunRenderPass and the pipeline tasks (for the case of lighting,
passing the current matrix base index).
They're now qfv_* and shared within the vulkan renderer. qfv_z_up cannot
be shared across renderers as they have their own ideas for the world
frame. qfv_box_rotations currently can't be shared across renderers
because if the Y-axis flip and the way it's handled, but sharing should
be achievable by modifying the other renderers to handle the sides
correctly (glsl and gl need to do lookups for the side enums, sw just
needs to be shown which way is up).
This eliminates the O(N^2) (N = map leaf count) operation of finding
visible lights and will later allow for finer culling of the lights as
they can be tested against the leaf volume (which they currently are
not as this was just getting things going). However, this has severely
hurt ad_tears' performance (I suspect due to the extreme number of
leafs), but the speed seems to be very steady. Hopefully, reconstructing
the vis clusters will help (I imagine it will help in many places, not
just lights).
The grid calculations are modified from those of Inigo Quilez
(https://iquilezles.org/articles/filterableprocedurals/), but give very
nice results: when thin enough, the lines fade out nicely instead of
producing crazy moire patterns. Though currently disabled, the default
planes are the xy, yz and zx planes with colored axes.
The idea is the UI system can call into the renderer without knowing
anything about the renderer, and the renderer can do what it pleases to
create UI elements in the correct context (passes as a parameter).
Panels can be anchored to a widget in another hierarchy, allowing for
things like cascading menus. They can also be extended via referencing
them by name, allowing for subsystems to add items to an already panel
(eg, extending a menu).