Modern maps can have many more leafs (eg, ad_tears has 98983 leafs).
Using set_t makes dynamic leaf counts easy to support and the code much
easier to read (though set_is_member and the iterators are a little
slower). The main thing to watch out for is the novis set and the set
returned by Mod_LeafPVS never shrink, and may have excess elements (ie,
indicate that nonexistent leafs are visible).
Having set_expand exposed is useful for loading data into a set.
However, it turns out there was a bug in its size calculation in that
when the requested set size was a multiple of SET_BITS (and greater than
the current set size), the new set size one be SET_BITS larger than
requested. There's now some tests for this :)
-999999 seems to be a hold-over from the software renderer passed
through both gl renderers. I guess it didn't matter in the gl renderers
due to various draw hacks, but it made quite a difference in vulkan.
Fixes the view model covering the hud.
Quake just looked wrong without the view model. I can't say I like the
way the depth range is hacked, but it was necessary because the view
model needs to be processed along with the rest of the alias models
(didn't feel like adding more command buffers, which I imagine would be
expensive with the pipeline switching).
When setting local rotation/scale/transform, need to cache the rotation and
scale, otherwise they can't be fetched easily later on (position is easy as
it's just the fourth column of the matrix).
The recent changes to key handling broke using escape to get out of the
console (escape would toggle between console and menu). Thus take care
of the menu (escape) part of the coupling FIXME by implementing a
callback for the escape key (and removing key_togglemenu) and sorting
out the escape key handling in console. Seems to work nicely
This fixes a bug when loading bsp29 files that resulted in leaf nodes
having bogus bounding boxes if any coordinates were negative (and thus
dynamic lights, and probably all sorts of other things) being broken.
And it took me only 9 years to notice :P
Without shadows, this is quite the cheat, but noclip is a cheat anyway,
so probably not that big a deal. It does, however, make noclip usable
for debugging.
Since vulkan supports 32-bit indexes, there's no need for the
shenanigans the EGL-based glsl renderer had to go through to render bsp
models (maps often had quite a bit more than 65536 vertices), though the
reduced GPU memory requirements of 16-bit indices does have its
advantages.
Any sun (a directional light) is in the outside node, which due to not
having its own PVS data is visible to all nodes, but that's a tad
excessive. However, any leaf node with sky surfaces will potentially see
any suns, and leaf nodes with no sky surfaces will see the sun only if
they can see a leaf that does have sky surfaces. This can be quite
expensive to calculate (already known to be moderately expensive for
just the camera leaf node (singular!) when checking for in-map lights)
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
Its sole purpose was to pass the newly allocated instsurf when chaining
an instance model (ammo box, etc) surface, but using expresion
statements removes the need for such shenanigans, and even makes
msurface_t that little bit smaller (though a separate array would be
much better for cache coherence).
More importantly, the relevant code is actually easier to understand: I
spent way too long working out what tinst was for and why it was never
cleared.
This reduces the overhead needed to manage the memory blocks as the
blocks are guaranteed to be page-aligned. Also, the superblock is now
alllocated from within one of the memory blocks it manages. While this
does slightly reduce the available cachelines within the first block (by
one or two depending on 32 vs 64 bit pointers), it removes the need for
an extra memory allocation (probably via malloc) for the superblock.
The renderer's LineGraph now takes a height parameter, and netgraph now
uses cl_* cvars instead of r_* (which never really made sense),
including it's own height cvar (the render graphs still use
r_graphheight).
The uptime display had not been updated for the offset Sys_DoubleTime,
so add Sys_DoubleTimeBase to make it easy to use Sys_DoubleTime as
uptime.
Line up the layout of the client list was not consistent for drop and
qport.
The render plugins have made a bit of a mess of getting at the data and
thus it's a tad confusing how to get at it in different places. Really
needs a proper cleanup :(
conwidth and conheight have been moved into vid.conview (probably change
the name at some time), and scr_vrect has been replaced by a view as
well. This makes it much easier to create 2d elements that follow the
screen size (taking advantage of a view's gravity) which will, in the
end, make changing the window size easier.
One moves and resizes the view in one operation as a bit of an
optimization as moving and resizing both update any child views, and
this does only one update.
The other sets the gravity and updates any child views as their
absolute positions would change as well as the updated view's absolute
position.
It now processes 4 pixels at a time and uses a bit mask instead of a
conditional to set 3 of the 4 pixels to black. On top of the 4:1 pixel
processing and avoiding inner-loop conditional jumps, gcc unrolls the
loop, so Draw_FadeScreen itself is more than 4x as fast as it was. The
end result is about 5% (3fps) speedup to timedemo demo1 on my 900MHz
EEE Pc when nq has been hacked to always draw the fade-screen.
qwaq-curses has its place, but its use for running vkgen was really a
placeholder because I didn't feel like sorting out the different
initialization requirements at the time. qwaq-cmd has the (currently
unnecessary) threading power of qwaq-curses, but doesn't include any UI
stuff and thus doesn't need curses. The work also paves the way for
qwaq-x11 to become a proper engine (though sorting out its init will be
taken care of later).
Fixes#15.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
I had forgotten to test with shared libs and it turns out jack and alsa
were directly accessing symbols in the renderer (and in jack's case,
linking in a duplicate of the renderer).
Fixes#16.
The JACK Audio Connection Kit support is now just an output target
rather than a full duplicate of the renderer (in pull mode). This is
what I wanted to to back when I first added jack support, but I needed
to get the renderer working asynchronously without affecting any of the
other outputs.
Fixes#16.
on_update is for pull-model outpput targets to do periodic synchronous
checks (eg, checking that the connection to the actual output device is
still alive and reviving it if necessary)
Output plugins can use either a push model (synchronous) or a pull
model (asynchronous). The ALSA plugin now uses the pull model. This
paves the way for making jack output a simple output plugin rather than
the combined render/output plugin it currently is (for #16) as now
snd_dma works with both models.
This gets the alsa target working nicely for mmapped outout. I'm not
certain, but I think it will even deal with NPOT buffer sizes (I copied
the code from libasound's sample pcm.c, thus the uncertainty).
Non-mmapped output isn't supported yet, but the alsa target now works
nicely for pull rendering.
However, some work still needs to be done for recovery failure: either
disable the sound system, or restart the driver entirely (preferable).
This brings the alsa driver in line with the jack render (progress
towards #16), but breaks most of the other drivers (for now: one step at
a time). The idea is that once the pull model is working for at least
one other target, the jack renderer can become just another target like
it should have been in the first place (but I needed to get the pull
model working first, then forgot about it).
Correct state checking is not done yet, but testsound does produce what
seems to be fairly good sound when it starts up correctly (part of the
state checking (or lack thereof), I imagine).
This failed with errors such as:
from ./include/QF/simd/vec4d.h:32,
from libs/util/simd.c:37:
./include/QF/simd/vec4d.h: In function ‘qmuld’:
/usr/lib/gcc/x86_64-pc-linux-gnu/10.3.0/include/avx2intrin.h:1049:1: error: inlining failed in call to ‘always_inline’ ‘_mm256_permute4x64_pd’: target specific option mismatch
1049 | _mm256_permute4x64_pd (__m256d __X, const int __M)
and rename the variable since it's not the size of the frame (may be
from the very early days of ALSA development, and I suspect the
terminology changed a bit).
The calculation was including the bits per sample, which makes no sense
as the period size determines the number of samples in a submission
chunk (and thus latency). For now, set it to around 5.5ms (will probably
need a cvar).
If Sys_Shutdown gets called twice, particularly if a shutdown callback
hangs and the program is killed with INT or QUIT, shutdown_list would be
in an invalid state. Thus, get the required data (function pointer and
data pointer) from the list element, then unlink the element before
calling the function. This ensures that a reinvocation of Sys_Shutdown
continues from the next callback or ends cleanly. Fixes a segfault when
killing testsound while using the oss output (it hangs on shutdown).
Fixes#12
However, this is a bit of a band-aid in that the code for global defs
seems redundant (there is very similar code a little above that is
always executed) and the code for field defs should probably be executed
unconditionally: I suspect the problem fixed by
d5454faeb7 still shows with game coded
compiled with recent versions of the compiler, I just haven't tested
any.
Support for finding the first address associated with a source line was
added to the engine, returning 0 if not found.
A temporary breakpoint is set and the progs allowed to run free.
However, better handling of temporary breakpoitns is needed as currently
a "permanent" breakpoint will be cleared without clearing the temporary
breakpoing if the permanent breakpoing is hit while execut-to-cursor is
running.
For now, just bsearch (normal and fuzzy), qsort, and prefixsum (not in
C's stdlib that I know of, but I think having native implementations of
float and int prefix sums will be useful.
Fuzzy bsearch is useful for finding an entry in a prefix sum array
(value is >= ele[0], < ele[1]), and the reentrant version is good when
data needs to be passed to the compare function. Adapted from the code
used in pr_resolve.
A bit of a mess for optimized vs unoptimized, but the tests acknowledge
the differences in precision while checking that the code produces the
right results allowing for that precision.
It seems that i686 code generation is all over the place reguarding sse2
vs fp, with the resulting differences in carried precision. I'm not sure
I'm happy with the situation, but at least it's being tested to a
certain extent. Not sure if this broke basic (no sse) i686 tests.
GCC does a fairly nice job of producing code for vector types when the
hardware doesn't support SIMD, but it seems to break certain math
optimization rules due to excess precision (?). Still, it works well
enough for the core engine, but may not be well suited to the tools.
However, so far, only qfvis uses vector types (and it's not tested yet),
and tools should probably be used on suitable machines anyway (not
forces, of course).
I don't know that the cache line size is 64 bytes on 32 bit systems, but
it should be ok to assume that 64-byte alignment behaves well on systems
with smaller cache lines so long as they are powers of two. This does
mean there is some waste on 32-bit systems, but it should be fairly
minimal (32 bytes per memblock, which manages page sized regions).
Legacy progs do not have the extended defs data (and usually won't have
anything more complicated than a vector), so use the basic type size for
the def size. Fixes broken edict prints.
Standard quake has just linear, but the modding community added inverse,
inverse-square (raw and offset (1/(r^2+1)), infinite (sun), and
ambient (minlight). Other than the lack of shadows, marcher now looks
really good.
Because LoadImage uses Hunk_TempAlloc, the face images need to be copied
individually. Really, what's neeeded is to be able to load the image
data into a pre-allocated buffer (ideally, the staging buffer for
vulkan, but that's for later).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).