The code dealing with state is a bit of a mess, but everything is
working nicely. Get around 400fps when all 6 faces need to be rendered
(no surprise: it should be about 1/6 of that for normal rendering). The
messy state handling code did not come as a surprise as I suspected
there were various mistakes in my scene rendering "recipe", and fisheye
highlighted them nicely (I'm sure getting this stuff working in Vulkan
will highlight even more issues).
Finally, after a decade :P Looks pretty good, too, and is (almost)
properly scaled to the resolution (almost because the effect is a little
squashed, but I think the sw renderer does the same).
The GLSL compiler requires any #version lines to be the first (real)
line of the program, even #line causes an error, so if the first line of
the chunk starts with #version, insert the #line directive as the second
line.
Again, gl/vulkan not working yet (on the assumption that sw would be
trickier).
Fisheye overrides water warp because updating the projection map every
frame is far too expensive.
I've added a post-process pass to the interface in order to hide the
implementation details, but I'm not sure I'm happy about how the
multi-pass rendering for cube maps is handled (or having the frame
buffers as exposed as they are), but mainly because Vulkan will make
implementation interesting.
For now, OpenGL and Vulkan renderers are broken as I focused on getting
the software renderer working (which was quite tricky to get right).
This fixes a couple of issues: the segfault when warping the screen (due
to the scene rendering move invalidating the warp buffer), and warp
always having 320x200 resolution. There's still the problem of the
effect being too subtle at high resolution, but that's just a matter of
updating the tables and tweaking the code in D_WarpScreen.
Another issue is the Draw functions should probably write directly to
the main frame buffer or even one passed in as a parameter. This would
remove the need for binding the main buffer at the beginning and end of
the frame.
This used to be handled by R_RenderView (encompassing all of the
rendering) before the scene rendering was moved out to r_screen. This
fixes the stuck time in 32-bit nq-win.
Its guts have been moved to D_Init temporarily while I work on the
frame buffer design. This is actually a big part of that work as it
moves most of the frame buffer creation into the one place, making it
easier to ensure I get all the sub-buffers and caches created.
With what I have planned for frame buffers etc, GL 3.0 will be needed
even for the fixed-function GL renderer, and then I might even take the
GLSL renderer to 4.6 (dunno yet). This means that wgl will need to be
updated too, and I've found the info I need for that, but it's a bit
much to take on just yet.
I think the widespread use of recalc_refdef (and force_fullscreen) was
the result of a rushed merge of the renderer and video code (I do seem
to remember sprinkling them around). This cleans the two out of the
client code.
This avoids the possibility of a singularity (and thus the temptation to
use Sys_Error). While the rendering is rubbish, 0 degrees is allowed
because values less than 1 should be allowed, but where does one stop?
170 is the maximum in order to avoid any issues with (near) parallel or
inverted frustum planes (or other fun things) in the low level code.
Other than the view model (undecided on the approach) this has
R_RenderView pretty much pulled out of the low level renderers. With
this, I'll be able to focus on scene handling for a bit then getting
shadows and fisheye working (again for fisheye).
r_screen isn't really the right place, but it gets the scene rendering
out of the low-level renderers and will make it easier to sort out
later, and hopefully easier to figure out a good design for vulkan.
gl_overbright_f shouldn't need to run through any entity queues to
update the light maps as only the world model has light maps, and
hitting the world model should hit all its sub-models.
The change to using separate per-model-type entity queues resulted in
the lighting vector used for alias and iqm models being in an ephemeral
location (in the shared setup_lighting function's stack frame). This
resulted in the model rendering code getting a garbage vector due to it
being overwritten by another stack frame. What I don't get is why the
garbage varied from run to run for the same demo (demo2, the first scrag
behind the start door showed the bad lighting nicely), which made
tracking down the offending commit (and thus the code) rather
troublesome, though once I found it, it was a bit of a face-palm moment.
Move r_pcurrentvertbase into the sw renderer, cleaning up gl's use of
(not really needed there). Not ready to move r_bsp into the main bin yet
as there are linking issues since only the low-level code references any
of its symbols.
The code is really part of scene (not a typo wrt r_screen: that is
misnamed as such, or at least SCR_UpdateScreen needs to be split into
screen (2d overlay, really) and scene updates).
This breaks fisheye rendering as the fisheye code calls the actual scene
render code multiple times, but the fisheye code is called by said scene
render code via a diversion. The fisheye needs to be moved out to the
high level scene render, but that will takes some extra work for frame
buffer setup.
The two aren't compatible (but warping might be doable in the fisheye
code). The whole frame setup code needs a rework, and really, even the
buffer handling.
It being on the stack was a bad idea as R_RenderWorld returns before the
scans are rendered and thus the entity pointer winds up pointing to
abandoned stack space.
While the scheme of using our own allocated did work just fine, fisheye
rendering uses glGenTextures which caused a texture id clash and thus
invalid operations (the cube map texture happened to be the same as the
console background texture). Sure, I could have just "fixed" the fisheye
init code, but this brings gl closer in line with glsl (which makes
extensive use of glGenTextures and glDeleteTextures). This doesn't fix
any texture leaks gl has (plenty, I imagine), but it's a step in the
right direction.
Only for gl and sw at the moment (want to merge things further before I
do anything for glsl or vulkan). However, with with I've learned getting
gl and sw to work, glsl and vulkan will be trivial.
R_RecursiveLightUpdate has been obsolete for a very long time, and
R_Mirror is just wrong (needs envmaps etc, wonder if it can be done in
the fixed function code using skyclip?)
Finally. I never liked it (felt bad adding it in the first place), and
it has caused confusion with function and global variable names, but it
did let me get the render plugins working.
They're still slightly confusing, but the situation itself is confusing,
but the comments should be a little more helpful now as they are more
explicit about the orientation of the matrices and just which axis
points where.
This moves the common camera setup code out of the individual drivers,
and completely removes vup/vright/vpn from the non-software renderers.
This has highlighted the craziness around AngleVectors with it putting
+X forward, -Y right and +Z up. The main issue with this is it requires
a 90 degree pre-rotation about the Z axis to get the camera pointing in
the right direction, and that's for the native sw renderer (vulkan needs
a 90 degree pre-rotation about X, and gl and glsl need to invert an
axis, too), though at least it's just a matrix swizzle and vector
negation. However, it does mean the camera matrices can't be used
directly.
Also rename vpn to vfwd (still abbreviated, but fwd is much clearer in
meaning (to me, at least) than pn (plane normal, I guess, but which
way?)).