While there's currently only the one still, this will allow the entities
to be multiply queued for multi-pass rendering (eg, shadows). As the
avoidance of putting an entity in the same queue more than once relies
on the entity id, all entities now come from the scene (which is stored
in cl_world in the client code for nq and qw), thus the extensive
changes in the clients.
GL and GLSL were drawing the view model after particles instead of
before. For GL, this is likely due to avoiding fog affecting the view
model (which I think is not the right thing to do), and GLSL due to
copying GL (because I had no idea at the time). This makes the two
renderers consistent with the software renderers, and might even speed
things up a little as that's one less set of blends to do when the
particles are covered by the view model (I don't expect much
difference).
While I doubt the difference is all that significant, this should speed
up entity rendering because it cuts out a lot of branching, and
eliminates scanning the same list multiple times only to not do anything
for large chunks of the list.
The actual view and projection matrices are now consistent with vulkan,
with the vulkan-gl disparity moved into adjustment matrices. The goal is
to allow the same camera data and code to be used in all renderers. The
extra matrix multiplication shouldn't be too expensive as it occurs only
when the field of view (not often, under user control) or near and far
clip distances (very rarely) change.
After yesterday's crazy marathon editing all the particles files, and
starting to do another big change to them today, I realized that I
really do need to merge them down. All the actual spawning is now in the
client library (though particle insertion will need to be moved). GLSL
particle rendering is semi-broken in that it now does only points (until
I come up with a way to select between points and quads (probably a
context object, which I need anyway for Vulkan)).
This is actually a better solution to the renderer directly accessing
client code than provided by 7e078c7f9c.
Essentially, V_RenderView should not have been calling R_RenderView, and
CL_UpdateScreen should have been calling V_RenderView directly. The
issue was that the renderers expected the world entity model to be valid
at all times. Now, R_RenderView checks the world entity model's validity
and immediately bails if it is not, and R_ClearState (which is called
whenever the client disconnects and thus no longer has a world to
render) clears the world entity model. Thus R_RenderView can (and is)
now called unconditionally from within the renderer, simplifying
renderer-specific variants.
The renderer's LineGraph now takes a height parameter, and netgraph now
uses cl_* cvars instead of r_* (which never really made sense),
including it's own height cvar (the render graphs still use
r_graphheight).
vid.aspect is removed (for now) as it was not really the right idea (I
really didn't know what I was doing at the time). Nicely, this *almost*
fixes the fov bug on fresh installs: the view is now properly
upside-down rather than just flipped vertically (ie, it's now rotated
180 degrees).
This is the first step towards component-based entities.
There's still some transform-related stuff in the struct that needs to
be moved, but it's all entirely client related (rather than renderer)
and will probably go into a "client" component. Also, the current
components are directly included structs rather than references as I
didn't want to deal with the object management at this stage.
As part of the process (because transforms use simd) this also starts
the process of moving QF to using simd for vectors and matrices. There's
now a mess of simd and sisd code mixed together, but it works
surprisingly well together.
This paves the way for clean initialization of the Vulkan renderer, and
very much cleans up the older renderer initialization code as gl and sw
are no longer intertwined.
It turns out glsl, sw and sw32 weren't getting any benefit from R_CullBox
because the frustum wasn't setup :P. Get another 8% out of bigass1
(174->184fps). bigass1 now runs 2x as fast as it did before I started this
optimisation run :)
This allows the vid module to load the render module and access render
specific functions before the renderer initializes, which happens to need
an initialized vid module...
Where possible, symbols have been made static, prefixed with glsl_/GLSL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing. The moving was done via the gl
commit.
Where possible, symbols have been made static, prefixed with gl_/GL_ or
moved into the code shared by all renderers. This will make doing plugins
easier but done now for link testing.
Most subsystems that depend on other subsystems now call the init functions
themselves. This makes for much cleaner client initialization (more work
needs to be done for the server).
If the map got reloaded but the current leaf didn't change the world (and
most entities) didn't get drawn. Forcing a vis update by first setting
r_viewleaf to null and marking surfaces does the trick :)
Unfortunately, the maximum point size on Intel hardwar seems to be 1, so I
can't tell if the colors are right.
This is largely just a hacked version of GL's particle code.
Still nothing being rendered: still in the process of building the display
lists, but I'm making good progress. Get this into git before something
goes wrong :)