Explicit intrinsics are very similar to inline functions, so the
function data for generic explicit intrinsics functions also need a full
scope. Fixes the undefined symbols for generic type names.
I had already implemented the code generation side (though using type
ids instead of encodings is a nice change), but I hadn't implemented the
actual evaluation or even called it. Now return types can be computed
from generic parameters (eg, ivecN from vecN).
In the end, it does simplify things a lot, though it helped get function
pointers working at least a bit (they're not quite the same as C yet,
but I think that's mostly that functions can be struct fields).
They should now work in generic contexts, but the pressing need to work
on arrays was due to constant expressions for element counts breaking.
As a side effect, function pointers are now a thing (and seem to work
like they do in C)
They're buggy in that the defspaces for parameters and locals are
incorrect (they need to point to the calling scope's space). Also,
parameters are not yet hooked up correctly. However, errors (because I
need to allow casts from scalars to vectors) do get handled.
Because the symbol tables for generic functions are ephemeral (as such),
they need to be easily removed from the scope chain, it's easiest if
definitions are never added to them (instead, they get added to the
parent symbol table). This keeps handling of function declarations or
definitions and their parameter scopes simple as the function gets put
in the global scope still, and the parameter scope simply gets
reconnected to the global scope (really, the generic scope's parent)
when the parameter scope is popped within a generic scope.
The back-end support for renamed builtins (fte's = #0:name) was needed
for pascal functions because the internal name is now prefixed with an @
to allow the lvalue/rvalue selection of behavior for function symbols
Because the glsl front-end uses Ruamoko to compile its builtins, it
needs to switch languages, and the cleanest way to do so is to use a
context object that gets passed around. This removes not only the
current_language global, but also (as a bonus) any real references to
flex's scanner object (there's still a pointer in rua_ctx_t, but it's no
longer a parameter (which caused some pain in the change)).
Implemented via specific overloads of the function.
It's not quite working correctly in that parameter names are taken from
the declaration instead of definition. However, this seems to be an old
bug that went unnoticed due to me almost always using the same parameter
names in declaration and definition.
Also, the code in get_function() is a horrible mess.
However, the basic idea turned out to be simpler than I though (though
details of the implementation are indeed a little trickier): generic
functions are essentially prototype generators when implemented using
non-generic specialized overloads.
Ruamoko and v6(p) have their own copies despite being (currently) the
same, and spir-v's is currently empty, but now targeting spir-v doesn't
try to emit ruamoko code.
When the parameter is a reference, implicit casting is not allowed, but
when the parameter is by value and the argument is a reference, the
argument is dereferenced and promotion is allowed.
However, this covers only the selection of generic functions. It doesn't
deal with otherwise overloaded functions, nor does it do the actual
dereferencing or address taking.
I'd gotten tired of all the convoluted progs version checks, and with
the addition of spirv, they're not even always relevant, and adding C
(when I get to it) will make things even worse. However, for now the
first victim is just the parameter/return value size check.
Now, ctor expressions are collected and emitted after all other code,
and the ctor function being created outside of class_finish_module means
it's no longer limited to just class related initialization.
I don't know why I thought it was a good idea to make sy_var context
dependent. Renaming sy_var to sy_def makes it a little easier to know to
use the def field, too.
I don't yet know whether the generated code is correct, but the little
functions that compute a generic type gets stored in the function's
params/return type.
Allows the parsing of the return type in the following:
@generic(vec=[vec2,vec3,vec4]) {
@vector(bool,@width(vec)) lessThan(vec x, vec y);
}
Unfortunately, can't use math in int value parameters just yet, the
processing of expressions needs to be delayed (it's currently done
immediately so type-checking happens to early).
It's not connected up yet, but does produce what looks like the correct
code.
Now parameters can be declared `const`, `@in`, `@out`, `@inout`. `@in`
is redundant as it's the default, but I guess it's nice for
self-documenting code. `const` marks the parameter as read-only in the
function, `@out` and `@inout` allow the parameter to pass the value back
out (by copy), but `@out` does not initialize the parameter before
calling and returning without setting an `@out` parameter is an error
(but unfortunately, currently detected only when optimizing).
Unfortunately, it seems to have broken (only!) v6 progs when optimizing
as the second parameter gets optimized out.
Simply referencing the original metafunc resulted in only the first
variant getting a def. Now my little test generates defs for all called
variants of a generic function.
However, I'm still not sure this is quite the direction I want to go
with making calls to generic functions, but I still need to figure out
defining them. I think making progress with the glsl front-end will
help.
Checking only the last function to be added results in false negatives
and thus duplicates when defining a generic function. eg:
genFType radians (genFType degrees);
genDType radians (genDType degrees);
genFType radians (genFType degrees) = #0;
genDType radians (genDType degrees) = #0;