They should now work in generic contexts, but the pressing need to work
on arrays was due to constant expressions for element counts breaking.
As a side effect, function pointers are now a thing (and seem to work
like they do in C)
The main goal was to make it possible to give generic functions
definitions (since the code would be very dependent on the actual
parameter types), but will also allow for inline functions. It also
helped move a lot of the back-end dependent code out of semantics
processing and almost completely (if not completely) out of the parser.
Possibly more importantly, it gets the dags flushing out of the parser,
which means such is now shared by all front-ends.
There's probably a lot of dead code in expr.c now, but that can be taken
care of another time.
Since spir-v needs actual bools for its conditional instructions, the
time to do bool properly finally came. As expected, the changes caused
quite a mess, but Ruamoko now does bool/true/false.
I realized that spir-v pointers are essentially references (the way
they're used) since OpVariable requires a pointer type rather than the
base type. Thus, under the hood, references are just pointers with
automatic dereferencing. However, nothing uses references yet, and I
expect to run into issues with is_pointer vs is_reference vs is_ptr
(high-level pointer, reference, low-level pointer, respectively).
Most of them were noise from the type const correctness pass, but the
qc field function handling was always dubious (though in practice safe
due to how the type was built, but...). The remaining casts outside of
type.c need some thought.
There were a few places where some const-casts were needed, but they're
localized to code that's supposed to manipulate types (but I do want to
come up with something to clean that up).
Or at least mostly so (there are a few casts). This doesn't fix the
motor bug, but I've wanted to do this for over twenty years and at least
I know what's not causing the bug. However, disabling fold_constants in
expr_algebra.c does "fix" things, so it's still a good place to look.
Finally, that little e. is cleaned up. convert_name was a bit of a pain
(in that it relied on modifying the expression rather than returning a
new one, or more that such behavior was relied on).
While the progs engine itself implements the instructions correctly, the
opcode specs (and thus qfcc) treated the results as 32-bit (which was,
really, a hidden fixme, it seems).
This gets only some very basics working:
* Algebra (multi-vector) types: eg @algebra(float(3,0,1)).
* Algebra scopes (using either the above or @algebra(TYPE_NAME) where
the above was used in a typedef.
* Basis blades (eg, e12) done via procedural symbols that evaluate to
suitable constants based on the basis group for the blade.
* Addition and subtraction of multi-vectors (only partially tested).
* Assignment of sub-algebra multi-vectors to full-algebra multi-vectors
(missing elements zeroed).
There's still much work to be done, but I thought it time to get
something into git.
I'd created new_value_expr some time ago, but never used it...
Also, replace convert_* with cast_expr to the appropriate type (removes
a pile of value check and create code).
Nicely, I was able to reuse the generated conversion code used by the
progs engine to do the work in qfcc, just needed appropriate definitions
for the operand macros, and to set up the conversion code. Helped
greatly by the new value load/store functions.