I had already implemented the code generation side (though using type
ids instead of encodings is a nice change), but I hadn't implemented the
actual evaluation or even called it. Now return types can be computed
from generic parameters (eg, ivecN from vecN).
The code gen return statements checks for out/inout parameters in the
current function and thus could result in some undesired behavior when
constants are evaluated within such a function.
Allows the parsing of the return type in the following:
@generic(vec=[vec2,vec3,vec4]) {
@vector(bool,@width(vec)) lessThan(vec x, vec y);
}
Unfortunately, can't use math in int value parameters just yet, the
processing of expressions needs to be delayed (it's currently done
immediately so type-checking happens to early).
It's not connected up yet, but does produce what looks like the correct
code.
There were a few places where some const-casts were needed, but they're
localized to code that's supposed to manipulate types (but I do want to
come up with something to clean that up).
This makes a slight improvement to the commutator product in that it
removes the expand statement, but there's still the problem of (a+a)/2.
However, at least now the product is correct and slightly less abysmal.
This takes advantage of evaluate_constexpr to do all the work. Necessary
for use of basis blade constants in algebra contexts (avoids an internal
error).
Or at least mostly so (there are a few casts). This doesn't fix the
motor bug, but I've wanted to do this for over twenty years and at least
I know what's not causing the bug. However, disabling fold_constants in
expr_algebra.c does "fix" things, so it's still a good place to look.
Finally, that little e. is cleaned up. convert_name was a bit of a pain
(in that it relied on modifying the expression rather than returning a
new one, or more that such behavior was relied on).
Due to joys of pointers and the like, it's a bit of a bolt-on for now,
but it works nicely for basic math ops which is what I wanted, and the
code is generated from the expression.