This takes care of the global variables to a point (there is still the
global struct shared between the non-vulkan renderers), but it also
takes care of glsl's points-only rendering.
After yesterday's crazy marathon editing all the particles files, and
starting to do another big change to them today, I realized that I
really do need to merge them down. All the actual spawning is now in the
client library (though particle insertion will need to be moved). GLSL
particle rendering is semi-broken in that it now does only points (until
I come up with a way to select between points and quads (probably a
context object, which I need anyway for Vulkan)).
This may seem a little contradictory, but it's due to the difference
between a high level (engine) render pass and a Vulkan render pass
object (and quite likely a poor choice in names for the high level
object). This is necessary for supporting compute shader dispatches as
they cannot be submitted inside a Vulkan render pass.
This has the advantage of getting entity_t out of the particle system,
and much easier to read math. Also, it served as a nice test for my
particle physics shaders (implemented the ideas in C). There's a lot of
code that needs merging down: all but the actual drawing can be merged.
There's some weirdness with color ramps, but I'll look into that later.
They should increment by one for each pic, not 4 (I think some fluff
remaining from copying glsl's draw code).
I noticed the problem when I saw large gaps of 0s in the vertex data in
renderdoc.
This gets the crosshair working in Vulkan (next commit) and fixes issues
with changing the palette (though I've never seen a different palette
for quate, there's still the change from "all black" to an actual
palette).
This was needed to get crosshaircolor working correctly, but is likely
another step towards resizable windows (the listener set types are
generic for any viddef event, not just palette changes).
Holding onto the pointer is not a good idea, and it is read-only as
direct manipulation of the world matrix is not supported. However, this
is useful for passing the matrix to the GPU.
This means color, emission, and translucent. Fixes the HOM issues on my
VersaPro (but halves the frame-rate... definitely need to bring back the
forward renderer as an option).
This gets the pipelines loaded (and unloaded on shutdown). Probably the
easy part :P. Still need to sort out the command buffers,
synchronization, and particle generation (and probably a bunch else
that's not coming to mind).
This needed changing Vulkan_CreatePipeline to
Vulkan_CreateGraphicsPipeline for consistency (and parsing the
difference from a plist seemed... not worth thinking about).
It turned out the bindless approach wouldn't work too well for my design
of the sprite objects, but I don't think that's a big issue at this
stage (and it seems bindless is causing problems for brush/alias
rendering via renderdoc and on my versa pro). However, I have figured
out how to make effective use of descriptor sets (finally :P).
The actual normal still needs checking, but the sprites are currently
unlit so not an issue at this stage.
I'm not at all sure what I was thinking when I designed it, but I
certainly designed it wrong (to the point of being fairly useless). It
turns out memory requirements are already aligned in size (so just
multiplying is fine), and what I really wanted was to get the next
offset aligned to the given requirements.
This adds the shaders and the pipeline specs. I'm not sure that the
deferred rendering side of the render pass is appropriate, but I thought
I'd give it a go, since quake sprites are really cutoff rather than
translucent.
With the switch to multi-layer textures for brush models, the bsp and
alias texture descriptor sets became identical and thus the definitions
shareable. However, due to complications I don't want to address yet,
they're still separately identified, but I should be able to use the
texture set for most, if not all, pipelines.
The vertices and frame images are loaded into the one memory object,
with the vertices first followed by the images.
The vertices are 2D xy+uv sets meant to be applied to the model
transform frame, and are pre-computed for the sprite size (this part
does support sprites with varying frame image sizes).
The frame images are loaded into one image with each frame on its own
layer. This will cause some problems if any sprites with varying frame
image sizes are found, but the three sprites in quake are all uniform
size.
As much as it can be since the texture data is interleaved with the
model data in the files (I guess not that bad a design for 25 years ago
with the tight memory constraints), but this paves the way for
supporting sprites in Vulkan.
The cache system pointers are now indices into an array of
cache_system_t blocks, allowing them to be 32 bits instead of 64, thus
allowing cache_system_t to fit into a single CPU cache line. This still
gives and effective 38 bits (256GB) of addressing for cache/hunk. This
does mean that the cache functions cannot work with more than 256GB, but
should that become a problem, cache and working hunking hunk can be
separate, and it should be possible to have multiple cache systems.