While it takes one extra step to grab the marksurface pointer,
R_MarkLeaves and R_MarkLights (the two actual users) seem to be either
the same speed or fractionally faster (by a few microseconds). I imagine
the loss gone to the extra fetch is made up for by better bandwidth
while traversing the leafs array (mleaf_t now fits in a single cache
line, so leafs are cache-aligned since hunk allocations are aligned).
The bones aren't animated yet (and I realized I made the mistake of
thinking the bone buffer was per-model when it's really per-instance (I
think this mistake is in the rest of QF, too)), skin rendering is a
mess, need to default vertex attributes that aren't in the model...
Still, it's quite satisfying seeing Mr Fixit on screen again :)
I wound up moving the pipeline spec in with the rest of the pipelines as
the system isn't really ready for separating them.
The model system is rather clunky as it is focused around caching, so
unloading is more of a suggestion than anything, but it was good enough
for testing loading and unloading of IQM models in Vulkan.
Despite the base IQM specification not supporting blend-shapes, I think
IQM will become the basis for QF's generic model representation (at
least for the more advanced renderers). After my experience with .mu
models (KSP) and unity mesh objects (both normal and skinned), and
reviewing the IQM spec, it looks like with the addition of support for
blend-shapes, IQM is actually pretty good.
This is just the preliminary work to get standard IQM models loading in
vulkan (seems to work, along with unloading), and they very basics into
the renderer (most likely not working: not tested yet). The rest of the
renderer seems to be unaffected, though, which is good.
Vulkan doesn't appreciate the empty buffers that result from the model
not having any textures or surfaces that can be rendered (rightfully so,
for such a bare-metal api).
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
The improved allocation overheads have been implemented for gl and sw,
and glsl no longer uses malloc. Using array textures will have to wait
as the current texture loading code doesn't support them.
Really, this won't make all that much difference because alias models
with more than one skin are quite rare, and those with animated skin
groups are even rarer. However, for those models that do have more than
one skin, it will allow for reduced allocation overheads, and when
supported (glsl, vulkan, maybe gl), loading all the skins into an array
texture (since all skins are the same size, though external skins may
vary), but that's not implemented yet, this just wraps the old one skin
at a time code.
This means that a tex_t object is passed in instead of just raw bytes
and width and height, but it means the texture can specify whether it's
flipped or uses BGR instead of RGB. This fixes the upside down
screenshots for vulkan.
While the scheme of using our own allocated did work just fine, fisheye
rendering uses glGenTextures which caused a texture id clash and thus
invalid operations (the cube map texture happened to be the same as the
console background texture). Sure, I could have just "fixed" the fisheye
init code, but this brings gl closer in line with glsl (which makes
extensive use of glGenTextures and glDeleteTextures). This doesn't fix
any texture leaks gl has (plenty, I imagine), but it's a step in the
right direction.
And add a unary op macro. Having VectorCompOp makes it easy to write
macros that work for multiple data widths, which is why it and its users
now use (dst, ...) instead of (..., dst) as in the past. I'll sort out
the other macros later now that I know the compiler handily gives
messages about the switched order (uninitialized vars etc).
It turned out the bindless approach wouldn't work too well for my design
of the sprite objects, but I don't think that's a big issue at this
stage (and it seems bindless is causing problems for brush/alias
rendering via renderdoc and on my versa pro). However, I have figured
out how to make effective use of descriptor sets (finally :P).
The actual normal still needs checking, but the sprites are currently
unlit so not an issue at this stage.
I'm not at all sure what I was thinking when I designed it, but I
certainly designed it wrong (to the point of being fairly useless). It
turns out memory requirements are already aligned in size (so just
multiplying is fine), and what I really wanted was to get the next
offset aligned to the given requirements.
The vertices and frame images are loaded into the one memory object,
with the vertices first followed by the images.
The vertices are 2D xy+uv sets meant to be applied to the model
transform frame, and are pre-computed for the sprite size (this part
does support sprites with varying frame image sizes).
The frame images are loaded into one image with each frame on its own
layer. This will cause some problems if any sprites with varying frame
image sizes are found, but the three sprites in quake are all uniform
size.
As much as it can be since the texture data is interleaved with the
model data in the files (I guess not that bad a design for 25 years ago
with the tight memory constraints), but this paves the way for
supporting sprites in Vulkan.
This gets the alias pipeline in line with the bsp pipeline, and thus
everything is about as functional as it was before the rework (minus
dealing with large texture sets).
BSP textures are now two-layered with the albedo and emission in the two
layers rather than two separate images. While this does increase memory
usage for the textures themselves (most do not have fullbright pixels),
it cuts down on image and image view handles (and shader resources).
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
Mod_DecompressVis_set (via Mod_LeafPVS_set) can be used to recycle pvs
sets, but the set may have been set to everything at some stage, which
is implemented by inverting the set (making the set infinite) and having
1-bits remove elements from the set. This is most definitely not wanted
for pvs :)
Currently undecided what to do about Mod_DecompressVis_mix, thus the
fixme.
Fixes the flickering lights in any map where the camera is out of the
map for a single frame (eg, start.bsp, The Catacombs (hipnotic, hip2m3)).
The fact that numleafs did not include leaf 0 actually caused in many
places due to never being sure whether to add 1. Hopefully this fixes
some of the confusion. (and that comment in sv_init didn't last long :P)
Modern maps can have many more leafs (eg, ad_tears has 98983 leafs).
Using set_t makes dynamic leaf counts easy to support and the code much
easier to read (though set_is_member and the iterators are a little
slower). The main thing to watch out for is the novis set and the set
returned by Mod_LeafPVS never shrink, and may have excess elements (ie,
indicate that nonexistent leafs are visible).
Mostly, this gets the stage flags in with the barrier, but also adds a
couple more barrier templates. It should make for slightly less verbose
code, and one less opportunity for error (mismatched barrier/stages).
This gets the shaders needed for creating shadow maps, and the changes
to the lighting pipeline for binding the shadow maps, but no generation
or reading is done yet. It feels like parts of various systems are
getting a little big for their britches and I need to do an audit of
various things.
This fixes the textures (and presumably mesh data) being deleted while
still in use. Oddly, the wait was needed in both brush and alias models
(I expected brush to always come first).
This is for the conversion /to/ paletted textures. The conversion is
necessary for csqc support. In the process, the conversion has been sped up
by implementing a color cache for the conversion process. I haven't
measured the difference yet, but Mr Fixit does seem to load much faster for
the sw renderer than it did before the change (many months old memory).
Still "some" more to go: a pile to do with transforms and temporary
entities, and a nasty one with host_cbuf. There's also all the static
block-alloc lists :/
Double benefit, actually: faster when building a fat PVS (don't need to
copy as much) and can be used in multiple threads. Also, default visiblity
can be set, and the buffer size has its own macro.
The node struct was 72 bytes thus two cache line. Moving the pointer
into the brush model data block allows nodes to fit in a single cache
line (not that they're aligned yet, but that's next). It doesn't seem to
have made any difference to performance (at least in the vulkan
renderer), but it hasn't hurt, either, as the only place that needed the
parent pointer was R_MarkLeaves.
It's not quite as expected, but that may be due to one of msaa, the 0-15
range in the palette not being all the way to white, the color gradients
being not quite linear (haven't checked yet) or some combination of the
above. However, it's that what should be yellow is more green. At least
the zombies are no longer white and the ogres don't look like they're
wearing skeleton suits.
Doesn't seem to make much difference performance-wise, but speed does
seem to be fill-rate limited due to the 8x msaa. Still, it does mean
fewer bindings to worry about.
This is a big step towards a cleaner api. The struct reference in
model_t really should be a pointer, but bsp submodel(?) loading messed
that up, though that's just a matter of taking more care in the loading
code. It seems sensible to make that a separate step.
Probably not really necessary, but I think I found a small opportunity
for a buffer overflow in there while I was modifying the code, so this
is probably better anyway.
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
I had messed up my index array creation, but once that was fixed the
textures worked well other than a lot of pixels are shades of grey due
to being in the top or bottom color map range.
The dynamic array macros made this much easier than last time I looked
at it, especially when it came to figuring out the bad memory accesses
that I seem to remember from my last attempt 9 years ago.
This makes tex_t more generally useable and probably more portable. The
goal was to be able to use tex_t with data that is in a separate chunk
of memory.
The sky texture is loaded with black's alpha set to 0. While this does
hit both layers, the screen is cleared to black so it shouldn't be a
problem (and will allow having a skybox behind the sheets).
It now uses the ring buffer code I wrote for qwaq (and forgot about,
oops) to handle the packets themselves, and the logic for allocating and
freeing space from the buffer is a bit simpler and seems to be more
reliable. The automated test is a bit of a joke now, though, but coming
up with good tests for it... However, nq now cycles through the demos
without obvious issue under the same conditions that caused the light
map update code to segfault.
Copying data from the wrong buffer was the cause of the corrupted brush
model vertices, and then lots of little errors (mostly forgetting to
multiply by bpp) for textures.
This fixes a nine year old bug that I discovered only today thanks to
the vulkan renderer. The problem was that when a model had a clear
callback, it was not getting marked as needing to be reloaded, and thus
the model would be "reused" after being trampled on by another model
loading over it.
Also, plug a potential string buffer overflow (strcpy just will not
die!).
This cleans up texture_t and possibly even improves locality of
reference when running through texture chains (not profiled, and not
actually the goal).
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).
These are the ones where I could easily make scan-build happy. They do seem
to be potential holes where invalid data in one place could result in use
of uninitialized values.
While scan-build wasn't what I was looking for, it has proven useful
anyway: many of the sizeof errors were just noise, but a few were actual
bugs (allocating too much or too little memory).
This was caused by an out-by one error when setting up the skin: if cmap
was 0 then the gl_skin struct would be taken from index -1 of the array and
thus cause all sorts of grief.
GL sometimes crashes when building skins. This probably isn't the correct
fix (finding the situation where fb->tex can become NULL despite fb being
non-null is), but it does kill the segfault. Luckily, this is git and this
commit can just be reverted when the real fix shows up. :)